Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003;121(2):363-77.
doi: 10.1016/s0306-4522(03)00493-7.

Frequency-dependent expression of corticotropin releasing factor in the rat's cerebellum

Affiliations
Comparative Study

Frequency-dependent expression of corticotropin releasing factor in the rat's cerebellum

J B Tian et al. Neuroscience. 2003.

Abstract

Corticotropin releasing factor (CRF), localized in extrinsic afferents in the mammalian cerebellum, is defined as a neuromodulator within cerebellar circuits, and appears to be an essential element in the generation of long term depression, a proposed mechanism for motor learning. These physiological studies are based on exogenous application of CRF and do not address potential mechanisms that may influence endogenous release of the peptide. In the present study, immunohistochemistry was used to analyze changes in the lobular distribution of CRF-like immunoreactivity (LIR). In addition radioimmunoassay (RIA) was used to quantify changes in levels of the peptide in the cerebellum following stimulation of the inferior cerebellar peduncle (ICP) at 10 or 40 Hz or the inferior olivary nucleus (ION) at 1, 5, 10, or 20 Hz. Results indicate that there is a greater distribution of CRF-like-immunolabeled climbing fibers, mossy fibers, and astrocytes in all lobules of the cerebellum that is directly related to stimulation frequency. Maximal effects were elicited with 40 Hz ICP and 5-10 Hz ION stimulation. Quantitatively, the RIA studies indicate that there is a significant increase in CRF levels in the vermis, hemispheres and flocculus that correlates closely with stimulation frequency. In conclusion, stimulation of cerebellar afferents induces a significant change in the distribution and levels of CRF-LIR in climbing fibers, mossy fibers and glial cells. This suggests that the modulatory effects ascribed to CRF may influence a greater number of target neurons when levels of activity in afferent systems is increased.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources