Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Oct;4(10):653-9.
doi: 10.1034/j.1600-0854.2003.00127.x.

Tying everything together: the multiple roles of cysteine string protein (CSP) in regulated exocytosis

Affiliations
Free article
Review

Tying everything together: the multiple roles of cysteine string protein (CSP) in regulated exocytosis

Gareth J O Evans et al. Traffic. 2003 Oct.
Free article

Abstract

In addition to the core vesicle fusion machinery, the SNARE proteins, a large number of regulatory proteins have been implicated in the process of Ca2+-dependent exocytosis. How these exocytotic proteins are properly targeted and how their myriad interactions are temporally and spatially coordinated is poorly understood. Cysteine string protein (CSP), a secretory vesicle membrane protein and a member of the dnaJ family of co-chaperones, may assist in performing this function. Through its interaction with the ubiquitous chaperone, Hsc70, it is thought that cysteine string protein targets chaperone complexes to the exocytotic machinery to facilitate the correct folding of polypeptides or to regulate the assembly of protein complexes. Since its discovery, there have been conflicting reports from different systems concerned with whether cysteine string protein exerts its effects on exocytosis either up- or down-stream of Ca2+-influx. In this review, we summarize recent experiments that associate cysteine string protein with the regulation of vesicle filling, vesicle docking, Ca2+-channels and the SNARE proteins themselves, hence supporting a role for cysteine string protein as a multifunctional secretory co-chaperone. In addition, we provide an update on the mammalian isoforms of cysteine string protein following the recent discovery of two novel cysteine string proteins.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources