Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Sep;99(3):283-309.
doi: 10.1016/s0163-7258(03)00071-8.

Potential chemotherapeutic targets in the purine metabolism of parasites

Affiliations
Review

Potential chemotherapeutic targets in the purine metabolism of parasites

Mahmoud H el Kouni. Pharmacol Ther. 2003 Sep.

Abstract

Parasites are responsible for a wide variety of infectious diseases in human as well as in domestic and wild animals, causing an enormous health and economical blight. Current containment strategies are not entirely successful and parasitic infections are on the rise. In the absence of availability of antiparasitic vaccines, chemotherapy remains the mainstay for the treatment of most parasitic diseases. However, there is an urgent need for new drugs to prevent or combat some major parasitic infections because of lack of a single effective approach for controlling the parasites (e.g., trypanosomiasis) or because some serious parasitic infections developed resistance to presently available drugs (e.g., malaria). The rational design of a drug is usually based on biochemical and physiological differences between pathogens and host. Some of the most striking differences between parasites and their mammalian host are found in purine metabolism. Purine nucleotides can be synthesized by the de novo and/or the so-called "salvage" pathways. Unlike their mammalian host, most parasites studied lack the pathways for de novo purine biosynthesis and rely on the salvage pathways to meet their purine demands. Moreover, because of the great phylogenic separation between the host and the parasite, there are in some cases sufficient distinctions between corresponding enzymes of the purine salvage from the host and the parasite that can be exploited to design specific inhibitors or "subversive substrates" for the parasitic enzymes. Furthermore, the specificities of purine transport, the first step in purine salvage, diverge significantly between parasites and their mammalian host. This review highlights the unique transporters and enzymes responsible for the salvage of purines in parasites that could constitute excellent potential targets for the design of safe and effective antiparasitic drugs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms