A probabilistic method to detect regulatory modules
- PMID: 12855472
- DOI: 10.1093/bioinformatics/btg1040
A probabilistic method to detect regulatory modules
Abstract
Motivation: The discovery of cis-regulatory modules in metazoan genomes is crucial for understanding the connection between genes and organism diversity.
Results: We develop a computational method that uses Hidden Markov Models and an Expectation Maximization algorithm to detect such modules, given the weight matrices of a set of transcription factors known to work together. Two novel features of our probabilistic model are: (i) correlations between binding sites, known to be required for module activity, are exploited, and (ii) phylogenetic comparisons among sequences from multiple species are made to highlight a regulatory module. The novel features are shown to improve detection of modules, in experiments on synthetic as well as biological data.
Similar articles
-
Prediction of similarly acting cis-regulatory modules by subsequence profiling and comparative genomics in Drosophila melanogaster and D.pseudoobscura.Bioinformatics. 2004 Nov 1;20(16):2738-50. doi: 10.1093/bioinformatics/bth320. Epub 2004 May 14. Bioinformatics. 2004. PMID: 15145800
-
MORPH: probabilistic alignment combined with hidden Markov models of cis-regulatory modules.PLoS Comput Biol. 2007 Nov;3(11):e216. doi: 10.1371/journal.pcbi.0030216. Epub 2007 Sep 24. PLoS Comput Biol. 2007. PMID: 17997594 Free PMC article.
-
Finding cis-regulatory modules in Drosophila using phylogenetic hidden Markov models.Bioinformatics. 2007 Aug 15;23(16):2031-7. doi: 10.1093/bioinformatics/btm299. Epub 2007 Jun 5. Bioinformatics. 2007. PMID: 17550911
-
Computational methods for the detection of cis-regulatory modules.Brief Bioinform. 2009 Sep;10(5):509-24. doi: 10.1093/bib/bbp025. Epub 2009 Jun 4. Brief Bioinform. 2009. PMID: 19498042 Review.
-
Hidden Markov model and its applications in motif findings.Methods Mol Biol. 2010;620:405-16. doi: 10.1007/978-1-60761-580-4_13. Methods Mol Biol. 2010. PMID: 20652513 Review.
Cited by
-
Predicting Ancestral Segmentation Phenotypes from Drosophila to Anopheles Using In Silico Evolution.PLoS Genet. 2016 May 26;12(5):e1006052. doi: 10.1371/journal.pgen.1006052. eCollection 2016 May. PLoS Genet. 2016. PMID: 27227405 Free PMC article.
-
Large-scale analysis of transcriptional cis-regulatory modules reveals both common features and distinct subclasses.Genome Biol. 2007;8(6):R101. doi: 10.1186/gb-2007-8-6-r101. Genome Biol. 2007. PMID: 17550599 Free PMC article.
-
Stubb: a program for discovery and analysis of cis-regulatory modules.Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W555-9. doi: 10.1093/nar/gkl224. Nucleic Acids Res. 2006. PMID: 16845069 Free PMC article.
-
Quantitative analysis of the Drosophila segmentation regulatory network using pattern generating potentials.PLoS Biol. 2010 Aug 17;8(8):e1000456. doi: 10.1371/journal.pbio.1000456. PLoS Biol. 2010. PMID: 20808951 Free PMC article.
-
CREME: Cis-Regulatory Module Explorer for the human genome.Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W253-6. doi: 10.1093/nar/gkh385. Nucleic Acids Res. 2004. PMID: 15215390 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources