Skip to main page content
U.S. flag

An official website of the United States government

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003;5(2):54-67.
doi: 10.1186/ar623. Epub 2003 Jan 14.

Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action

Affiliations
Review

Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action

Larry W Moreland. Arthritis Res Ther. 2003.

Abstract

Although the predominant mechanism of intra-articular hyaluronan (hyaluronic acid) (HA) and hylans for the treatment of pain associated with knee osteoarthritis (OA) is unknown, in vivo, in vitro, and clinical studies demonstrate various physiological effects of exogenous HA. HA can reduce nerve impulses and nerve sensitivity associated with the pain of OA. In experimental OA, this glycosaminoglycan has protective effects on cartilage, which may be mediated by its molecular and cellular effects observed in vitro. Exogenous HA enhances chondrocyte HA and proteoglycan synthesis, reduces the production and activity of proinflammatory mediators and matrix metalloproteinases, and alters the behavior of immune cells. Many of the physiological effects of exogenous HA may be a function of its molecular weight. Several physiological effects probably contribute to the mechanisms by which HA and hylans exert their clinical effects in knee OA.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Several factors contribute to the breakdown and synthesis of cartilage. In osteoarthritis (OA), the balance between cartilage degradation and synthesis leans toward degradation. BMP, bone morphogenetic protein; bFGF, basic fibroblastic growth factor; IGF, insulin-like growth factor; IL, interleukin; MMP, matrix metalloproteinase; PG, proteoglycan; TGF, transforming growth factor; TIMP, tissue inhibitor of metalloproteinases; TNF, tumor necrosis factor.
Figure 2
Figure 2
The extracellular matrix of cartilage is composed of proteoglycans attached to a backbone of hyaluronic acid that is intertwined among collagen fibrils. Proteoglycans have both chondroitin-sulfate- and keratin-sulfate-rich regions, and link proteins facilitate binding of aggrecan to hyaluronic acid.

Similar articles

Cited by

References

    1. Carr AJ. Beyond disability: measuring the social and personal consequences of osteoarthritis. Osteoarthritis Cartilage. 1999;7:230–238. doi: 10.1053/joca.1998.0154. - DOI - PubMed
    1. American College of Rheumatology Subcommittee on Osteoarthritis Guidelines Recommendations for the medical management of osteoarthritis of the hip and knee. Arthritis Rheum. 2000;43:1905–1915. doi: 10.1002/1529-0131(200009)43:9<1905::AID-ANR1>3.0.CO;2-P. - DOI - PubMed
    1. Balazs E. The physical properties of synovial fluid and the specific role of hyaluronic acid. In: Helfet AJ, editor. In Disorders of the Knee. Philadelphia: J B Lippincott; 1982. pp. 61–74.
    1. Adams ME, Atkinson MH, Lussier AJ, Schulz JI, Siminovitch KA, Wade JP, Zummer M. The role of viscosupplementation with hylan G-F 20 (Synvisc) in the treatment of osteoarthritis of the knee: a Canadian multicenter trial comparing hylan G-F 20 alone, hylan G-F 20 with non-steroidal anti-inflammatory drugs (NSAIDs) and NSAIDs alone. Osteoarthritis Cartilage. 1995;3:213–225. - PubMed
    1. Lussier A, Cividino AA, McFarlane CA, Olszynski WP, Potashner WJ, De Medicis R. Viscosupplementation with hylan for the treatment of osteoarthritis: findings from clinical practice in Canada. J Rheumatol. 1996;23:1579–1585. - PubMed

MeSH terms