(S)-2-Amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic acid, a potent and selective agonist at the GluR5 subtype of ionotropic glutamate receptors. Synthesis, modeling, and molecular pharmacology
- PMID: 12672235
- DOI: 10.1021/jm0204441
(S)-2-Amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic acid, a potent and selective agonist at the GluR5 subtype of ionotropic glutamate receptors. Synthesis, modeling, and molecular pharmacology
Abstract
We have previously described (RS)-2-amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic acid (4-AHCP) as a highly effective agonist at non-N-methyl-d-aspartate (non-NMDA) glutamate (Glu) receptors in vivo, which is more potent than (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) but inactive at NMDA receptors. However, 4-AHCP was found to be much weaker than AMPA as an inhibitor of [(3)H]AMPA binding and to have limited effect in a [(3)H]kainic acid binding assay using rat cortical membranes. To shed light on the mechanism(s) underlying this quite enigmatic pharmacological profile of 4-AHCP, we have now developed a synthesis of (S)-4-AHCP (6) and (R)-4-AHCP (7). At cloned metabotropic Glu receptors mGluR1alpha (group I), mGluR2 (group II), and mGluR4a (group III), neither 6 nor 7 showed significant agonist or antagonist effects. The stereoisomer 6, but not 7, activated cloned AMPA receptor subunits GluR1o, GluR3o, and GluR4o with EC(50) values in the range 4.5-15 microM and the coexpressed kainate-preferring subunits GluR6 + KA2 (EC(50) = 6.4 microM). Compound 6, but not 7, proved to be a very potent agonist (EC(50) = 0.13 microM) at the kainate-preferring GluR5 subunit, equipotent with (S)-2-amino-3-(5-tert-butyl-3-hydroxyisothiazol-4-yl)propionic acid [(S)-Thio-ATPA, 4] and almost 4 times more potent than (S)-2-amino-3-(5-tert-butyl-3-hydroxyisoxazol-4-yl)propionic acid [(S)-ATPA, 3]. Compound 6 thus represents a new structural class of GluR5 agonists. Molecular modeling and docking to a crystal structure of the extracellular binding domain of the AMPA subunit GluR2 has enabled identification of the probable active conformation and binding mode of 6. We are able to rationalize the observed selectivities by comparing the docking of 4 and 6 to subtype constructs, i.e., a crystal structure of the extracellular binding domain of GluR2 and a homology model of GluR5.
Similar articles
-
The glutamate receptor GluR5 agonist (S)-2-amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic acid and the 8-methyl analogue: synthesis, molecular pharmacology, and biostructural characterization.J Med Chem. 2009 Aug 13;52(15):4911-22. doi: 10.1021/jm900565c. J Med Chem. 2009. PMID: 19588945
-
Tetrazolyl isoxazole amino acids as ionotropic glutamate receptor antagonists: synthesis, modelling and molecular pharmacology.Bioorg Med Chem. 2005 Sep 15;13(18):5391-8. doi: 10.1016/j.bmc.2005.06.024. Bioorg Med Chem. 2005. PMID: 16043357
-
Resolution, configurational assignment, and enantiopharmacology of 2-amino-3-[3-hydroxy-5-(2-methyl-2H- tetrazol-5-yl)isoxazol-4-yl]propionic acid, a potent GluR3- and GluR4-preferring AMPA receptor agonist.Chirality. 2000 Nov;12(10):705-13. doi: 10.1002/1520-636X(2000)12:10<705::AID-CHIR2>3.0.CO;2-9. Chirality. 2000. PMID: 11054828
-
Stereostructure-activity studies on agonists at the AMPA and kainate subtypes of ionotropic glutamate receptors.Chirality. 2003 Feb;15(2):167-79. doi: 10.1002/chir.10177. Chirality. 2003. PMID: 12520509 Review.
-
New developments in the molecular pharmacology of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate and kainate receptors.Pharmacol Ther. 1996;70(1):65-89. doi: 10.1016/0163-7258(96)00014-9. Pharmacol Ther. 1996. PMID: 8804111 Review.
Cited by
-
Glutamate receptor ion channels: structure, regulation, and function.Pharmacol Rev. 2010 Sep;62(3):405-96. doi: 10.1124/pr.109.002451. Pharmacol Rev. 2010. PMID: 20716669 Free PMC article. Review.
-
Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels.Pharmacol Rev. 2021 Oct;73(4):298-487. doi: 10.1124/pharmrev.120.000131. Pharmacol Rev. 2021. PMID: 34753794 Free PMC article. Review.
-
Molecular and pharmacological evidence for a facilitatory functional role of pre-synaptic GLUK2/3 kainate receptors on GABA release in rat trigeminal caudal nucleus.Eur J Pain. 2012 Sep;16(8):1148-57. doi: 10.1002/j.1532-2149.2012.00122.x. Epub 2012 Mar 6. Eur J Pain. 2012. PMID: 22392917 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Chemical Information