Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Oct-Dec;13(4):398-400.

The regulation of death-associated protein (DAP) kinase in apoptosis

Affiliations
  • PMID: 12517721
Review

The regulation of death-associated protein (DAP) kinase in apoptosis

Galit Shohat et al. Eur Cytokine Netw. 2002 Oct-Dec.

Abstract

DAP-kinase is a calcium/calmodulin (Ca2+/CaM) serine/threonine kinase which positively mediates programmed cell death in a variety of cell systems. The kinase is localized to the actin microfilament and has a unique, multidomain structure consisting of ankyrin repeats and a death domain. One of the substrates of DAP-kinase was identified as myosin light chain (MLC), the phosphorylation of which mediates membrane blebbing. Another arm in its mode of action leads to the formation of autophagic vesicles. Recent work addressed its mode of regulation and identified a mechanism which restrains its apoptotic function in growing cells and enables its activation during cell death. It involves an inhibitory type of autophosphorylation on serine 308 within the CaM regulatory domain. This negative phosphorylation takes place in growing cells and is strongly reduced upon their exposure to the apoptotic stimulus of C6-ceramide. The substitution of serine 308 to alanine, which mimics the ceramide-induced dephosphorylation at this site, increases Ca2+/CaM-independent substrate phosphorylation, as well as binding and overall sensitivity of the kinase to CaM. At the cellular level, it strongly enhances the death-promoting activity of the kinase. These results are consistent with a molecular model in which phosphorylation on serine 308 stabilizes a locked conformation of the CaM regulatory domain within the catalytic cleft and, simultaneously, also interferes with CaM binding. We propose that this unique mechanism of auto-inhibition evolved to impose a locking device which keeps DAP-kinase silent in healthy cells and ensures its activation only in response to apoptotic signals.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources