The host-microbe interface within the gut
- PMID: 12473298
- DOI: 10.1053/bega.2002.0342
The host-microbe interface within the gut
Abstract
Colonization with bacteria is critical for the normal structural and functional development and optimal function of the mucosal immune system. Unrestrained mucosal immune activation in response to bacterial signals from the lumen is, however, a risk factor for inflammatory bowel disease. Therefore, mucosal immune responses to indigenous flora require precise control and an immunosensory capacity for distinguishing commensals from pathogens. The use of germ-free animal models with selective colonization strategies combined with modern molecular techniques promises to clarify the molecular signals responsible for host-flora interactions in health and disease. At least half of the resident flora cannot be cultured by conventional techniques but are identifiable by molecular methods. Collectively, the resident flora represent a virtual organ with a metabolic activity in excess of the liver and a microbiome in excess of the human genome. An improved understanding of this hidden organ holds secrets relevant to several infectious, inflammatory and neoplastic disease mechanisms.
Similar articles
-
The gut flora as a forgotten organ.EMBO Rep. 2006 Jul;7(7):688-93. doi: 10.1038/sj.embor.7400731. EMBO Rep. 2006. PMID: 16819463 Free PMC article. Review.
-
Structure of the intestinal flora responsible for development of the gut immune system in a rodent model.Microbes Infect. 2000 Sep;2(11):1343-51. doi: 10.1016/s1286-4579(00)01288-0. Microbes Infect. 2000. PMID: 11018451 Review.
-
Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases.Immunol Lett. 2004 May 15;93(2-3):97-108. doi: 10.1016/j.imlet.2004.02.005. Immunol Lett. 2004. PMID: 15158604 Review.
-
Host-flora interactions in inflammatory bowel disease.Inflamm Bowel Dis. 2004 Feb;10 Suppl 1:S16-24. doi: 10.1097/00054725-200402001-00004. Inflamm Bowel Dis. 2004. PMID: 15168825 Review. No abstract available.
-
Gut microbiota: mining for therapeutic potential.Clin Gastroenterol Hepatol. 2007 Mar;5(3):274-84. doi: 10.1016/j.cgh.2006.12.009. Clin Gastroenterol Hepatol. 2007. PMID: 17368226 Review.
Cited by
-
Impact of the Gastro-Intestinal Bacterial Microbiome on Helicobacter-Associated Diseases.Healthcare (Basel). 2019 Feb 22;7(1):34. doi: 10.3390/healthcare7010034. Healthcare (Basel). 2019. PMID: 30813360 Free PMC article. Review.
-
Microbiota conservation and BMI signatures in adult monozygotic twins.ISME J. 2013 Apr;7(4):707-17. doi: 10.1038/ismej.2012.146. Epub 2012 Nov 29. ISME J. 2013. PMID: 23190729 Free PMC article.
-
Intestinal microbiota could transfer host Gut characteristics from pigs to mice.BMC Microbiol. 2016 Oct 11;16(1):238. doi: 10.1186/s12866-016-0851-z. BMC Microbiol. 2016. PMID: 27729007 Free PMC article.
-
Gut Microbiota and Obesity.Curr Obes Rep. 2012 Mar 1;1(1):1-8. doi: 10.1007/s13679-011-0001-8. Curr Obes Rep. 2012. PMID: 23106036 Free PMC article.
-
The role and therapeutic potential of gut microbiome in severe burn.Front Cell Infect Microbiol. 2022 Nov 17;12:974259. doi: 10.3389/fcimb.2022.974259. eCollection 2022. Front Cell Infect Microbiol. 2022. PMID: 36467727 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources