Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Nov;62(5):983-92.
doi: 10.1124/mol.62.5.983.

Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains

Affiliations
Free article

Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains

Rennolds S Ostrom et al. Mol Pharmacol. 2002 Nov.
Free article

Abstract

A number of different agonists activate G protein-coupled receptors to stimulate adenylyl cyclase (AC), increase cAMP formation, and promote relaxation in vascular smooth muscle. To more fully understand this stimulation of AC, we assessed the expression, regulation, and compartmentation of AC isoforms in rat aortic smooth muscle cells (RASMC). Reverse transcription-polymerase chain reaction detected expression of AC3, AC5, and AC6 mRNA, whereas immunoblot analysis indicated expression of AC3 and AC5/6 protein primarily in caveolin-rich membrane (cav) fractions relative to noncaveolin (noncav) fractions. Beta(1)-adrenergic receptors (AR), beta(2)AR, and G(s) were detected in both cav and noncav fractions, whereas the prostanoid receptors EP(2)R and EP(4)R were excluded from cav fractions. We used an adenoviral construct to increase AC6 expression. Overexpressed AC6 localized only in noncav fractions. Two-fold overexpression of AC6 caused enhancement of forskolin-, isoproterenol- and prostaglandin E(2)-stimulated cAMP formation but no changes in basal levels of cAMP. At higher levels of AC6 overexpression, basal and adenosine receptor-stimulated cAMP levels were increased. Stimulation of cAMP levels by agents that increase Ca(2+) in native cells was consistent with the expression of AC3, but overexpression of AC6, which is inhibited by Ca(2+), blunted the Ca(2+)-stimulable cAMP response. These data indicate that: 1) RASMC express multiple AC isoforms that localize in both caveolin-rich and noncaveolin domains, 2) expression of AC6 in non-caveolin-rich membranes can increase basal levels of cAMP and response to several stimulatory agonists, and 3) Ca(2+)-mediated regulation of cAMP formation depends upon expression of different AC isoforms in RASMC. Compartmentation of GPCRs and AC is different in cardiomyocytes than in RASMC, indicating that targeting of these components to caveolin-rich membranes can be cell-specific. Moreover, our results imply that the colocalization of GPCRs and the AC isoforms they activate need not occur in caveolin-rich fractions.

PubMed Disclaimer

Similar articles

Cited by

Publication types