Chronic agonist treatment converts antagonists into inverse agonists at delta-opioid receptors
- PMID: 12183665
- DOI: 10.1124/jpet.102.035964
Chronic agonist treatment converts antagonists into inverse agonists at delta-opioid receptors
Abstract
In cellular models, chronic exposure to mu-opioid agonists converts antagonists into inverse agonists at mu-receptors. Such adaptations could contribute to the development of tolerance and/or dependence. To determine whether delta-receptors respond similarly, or whether this adaptation is unique for mu-receptors, this study examined the effects of prolonged agonist exposure on the intrinsic activity of several delta-opioid ligands in GH(3) cells expressing delta-receptors. In opioid naive cells, delta-receptors were constitutively active, and a series of delta-ligands displayed a range of intrinsic activities for G protein activation. Chronic treatment with the full delta-agonist [D-Pen(2,5)]-enkephalin reduced the acute ability of [D-Pen(2,5)]-enkephalin to stimulate and the full inverse agonist N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI-174864) to inhibit G protein activation. In contrast, although naloxone and naltriben exhibited weak partial agonism in opioid naive cells, both ligands acted as full inverse agonists to produce concentration-dependent inhibition of guanosine 5'-O-(3-[(35)S]thio)triphosphate binding after prolonged exposure to [D-Pen(2,5)]-enkephalin or to the partial agonist morphine. This effect was reversed by a neutral delta-antagonist (N,N-bisallyl)-Tyr-Gly-Gly-psi-(CH(2)S)-Phe-Leu-OH (ICI-154129). Finally, as is also characteristic of inverse agonists, naloxone and naltriben demonstrated higher affinities for uncoupled delta-receptors in cells chronically treated with [D-Pen(2,5)]-enkephalin, relative to opioid naive cells. Therefore, this relatively novel adaptation is shared by both mu- and delta-opioid receptors and therefore may serve as an important common mechanism involved the development of tolerance and/or dependence.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials