Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 May 1:7:d1369-95.
doi: 10.2741/ben.

Adenovirus and cell cycle control

Affiliations
Review

Adenovirus and cell cycle control

Haggit Ben-Israel et al. Front Biosci. .

Abstract

Adenovirus infection of quiescent cells induces transition from G0 or G1 into the S phase of the cell cycle and allows cellular proliferation. This is beneficial for the virus since cells in S phase provide optimal conditions for viral replication. Adenovirus E1A, E1B and E4 gene products contribute to cell cycle deregulation. E1A proteins inactivate the pRb checkpoint, allowing the E2F transcription factor to activate genes involved in nucleotide metabolism and DNA replication, which are required in S phase. E1A also interacts with transcriptional modulators, including histone acetyltransferases, histone deacetylases, and other chromatin remodeling factors. These interactions affect transcription of several cellular and viral genes, some of which are involved in cell cycle regulation. Cell cycle deregulation by E1A results in stabilization and accumulation of p53. To prevent cell cycle arrest and apoptosis that would be triggered by p53, the adenovirus E1B and E4orf6 gene products employ various mechanisms to inactivate the tumor suppressor. Additional E4 gene products also interact with and modulate cell cycle regulators. Cell cycle checkpoints targeted by adenovirus proteins are often compromised in human tumors as well. Thus, understanding the interactions between adenovirus and the cell cycle has facilitated the generation of adenovirus mutants, which can replicate only in cells with inactivated checkpoints. Such "oncolytic" viruses are being tested for their ability to specifically replicate in and lyse cancer cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources