Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Oct;130(3):437-60.
doi: 10.1016/s1095-6433(01)00442-1.

Osmosensing and osmoregulatory compatible solute accumulation by bacteria

Affiliations
Review

Osmosensing and osmoregulatory compatible solute accumulation by bacteria

J M Wood et al. Comp Biochem Physiol A Mol Integr Physiol. 2001 Oct.

Abstract

Bacteria inhabit natural and artificial environments with diverse and fluctuating osmolalities, salinities and temperatures. Many maintain cytoplasmic hydration, growth and survival most effectively by accumulating kosmotropic organic solutes (compatible solutes) when medium osmolality is high or temperature is low (above freezing). They release these solutes into their environment when the medium osmolality drops. Solutes accumulate either by synthesis or by transport from the extracellular medium. Responses to growth in high osmolality medium, including biosynthetic accumulation of trehalose, also protect Salmonella typhimurium from heat shock. Osmotically regulated transporters and mechanosensitive channels modulate cytoplasmic solute levels in Bacillus subtilis, Corynebacterium glutamicum, Escherichia coli, Lactobacillus plantarum, Lactococcus lactis, Listeria monocytogenes and Salmonella typhimurium. Each organism harbours multiple osmoregulatory transporters with overlapping substrate specificities. Membrane proteins that can act as both osmosensors and osmoregulatory transporters have been identified (secondary transporters ProP of E. coli and BetP of C. glutamicum as well as ABC transporter OpuA of L. lactis). The molecular bases for the modulation of gene expression and transport activity by temperature and medium osmolality are under intensive investigation with emphasis on the role of the membrane as an antenna for osmo- and/or thermosensors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources