Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Oct 2;1(3):144-69.
doi: 10.1002/1439-7633(20001002)1:3<144::AID-CBIC144>3.0.CO;2-D.

Linking the fields--the interplay of organic synthesis, biophysical chemistry, and cell biology in the chemical biology of protein lipidation

Affiliations
Review

Linking the fields--the interplay of organic synthesis, biophysical chemistry, and cell biology in the chemical biology of protein lipidation

D Kadereit et al. Chembiochem. .

Abstract

Research in the biological sciences has undergone a fundamental and dramatic change during the last decades. Whereas biology was more phenomenologically oriented for a long time, today many biological processes are investigated and understood in molecular detail. It has become evident that all biological phenomena have a chemical basis: Biology is based on chemical principles. In the past, this insight had led to the development of biochemistry, molecular biology, and modern pharmacology. Today it increasingly determines the manner in which various biological phenomena are studied. The tools provided by classical biological techniques often are not sufficient to address the prevailing issues in precise molecular detail. Instead, the strengths of both chemical and biological methodology have to be used. Several recent research projects have proven that combining the power of organic synthesis with cell biology may open up entirely new and alternative opportunities for the study of biological problems. In this review we summarize the successful interplay between three disciplines-organic synthesis, biophysics, and cell biology-in the study of protein lipidation and its relevance to targeting of proteins to the plasma membrane of cells in precise molecular detail. This interplay is highlighted by using the Ras protein as a representative example. The development of methods for the synthesis of Ras-derived peptides and fully functional Ras proteins, the determination of their biophysical properties, in particular the ability to bind to model membranes, and finally the use of synthetic Ras peptides and Ras proteins in cell biological experiments are addressed. The successful combination of these three disciplines has led to a better understanding of the factors governing the selective targeting of Ras and related lipid-modified proteins to the plasma membrane.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources