Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar 15;277(11):8999-9009.
doi: 10.1074/jbc.M110453200. Epub 2002 Jan 4.

Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity

Affiliations
Free article

Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity

Juraj Bies et al. J Biol Chem. .
Free article

Abstract

The transcription factor c-Myb is subject to several types of post-translational modifications, including phosphorylation, acetylation, and ubiquitination. These modifications regulate the transcription and transforming activity as well as the proteolytic stability of c-Myb. Here we report the covalent modification of c-Myb with the small ubiquitin-related protein SUMO-1. Mutational analysis identified two major sumolation sites (Lys(499) and Lys(523)) in the negative regulatory domain. Interestingly, the single mutation K523R completely abolished modification of c-Myb with SUMO-1, suggesting that sumolation of Lys(523) is required for modification of other lysines in c-Myb. In accordance with this observation, we found that the SUMO-1-conjugating enzyme Ubc9 interacted only with a region surrounding Lys(523) (also called the PEST/EVES motif). Experiments aimed at determining the proteolytic stability of sumolated and unmodified forms of c-Myb revealed that at least two covalently attached SUMO-1 molecules dramatically increased the stability of c-Myb. However, mutations of the SUMO-1 modification sites did not alter its stability, suggesting that a mechanism(s) other than competition of ubiquitin and SUMO-1 for the same lysine is involved in the stabilization of sumolated c-Myb protein. Finally, the K523R mutant of c-Myb, entirely deficient in sumolation, was shown to have an increased transactivation capacity on a Myb-responsive promoter, suggesting that SUMO-1 negatively regulates the transactivation function of c-Myb. Thus, modification of c-Myb with SUMO-1 represents a novel mechanism through which the negative regulatory domain can exert its suppressing activity on c-Myb transactivation capacity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources