Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;41(6):1365-79.
doi: 10.1046/j.1365-2958.2001.02606.x.

The ubc2 gene of Ustilago maydis encodes a putative novel adaptor protein required for filamentous growth, pheromone response and virulence

Affiliations
Free article

The ubc2 gene of Ustilago maydis encodes a putative novel adaptor protein required for filamentous growth, pheromone response and virulence

M E Mayorga et al. Mol Microbiol. 2001 Sep.
Free article

Abstract

The Basidiomycete fungus Ustilago maydis causes corn smut disease and alternates between a budding haploid saprophyte and a filamentous dikaryotic pathogen. Previous work demonstrated that haploid adenylate cyclase (uac1) mutants display a constitutively filamentous phenotype. Suppressor mutants of a uac1 disruption strain, named ubc for Ustilago bypass of cyclase, no longer require cAMP for the budding morphology. The ubc2 gene was isolated by complementation and is required for filamentous growth. The deduced amino acid sequence encoded by ubc2 shows localized homology to Sterile Alpha Motif (SAM), Ras Association (RA) and Src homology 3 (SH3) protein-protein interaction domains. A K78E missense mutation within the SAM domain, revealed a genetic interaction between ubc2 and ubc4, a pheromone-responsive MAP kinase kinase kinase. This indicates involvement of ubc2 in the pheromone-responsive MAP kinase cascade and ubc2 is required for pheromone-responsive morphogenesis. The ubc2 gene is a critical virulence factor. Thus, ubc2 encodes a putative novel adaptor protein that may act directly upstream of the pheromone-responsive MAP kinase cascade in U. maydis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources