Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul;78(2):406-12.
doi: 10.1046/j.1471-4159.2001.00419.x.

Role of alpha2-macroglobulin in regulating amyloid beta-protein neurotoxicity: protective or detrimental factor?

Affiliations
Free article

Role of alpha2-macroglobulin in regulating amyloid beta-protein neurotoxicity: protective or detrimental factor?

C Fabrizi et al. J Neurochem. 2001 Jul.
Free article

Abstract

alpha2-Macroglobulin (alpha2M) has been identified as a carrier protein for beta-amyloid (Abeta) decreasing fibril formation and affecting the neurotoxicity of this peptide. The alpha2-macroglobulin receptor/low density lipoprotein receptor related protein (LRP) is involved in the internalization and degradation of the alpha2M/Abeta complexes and its impairment has been reported to occur in Alzheimer's disease. Previous studies have shown alpha2M to determine an enhancement or a reduction of Abeta toxicity in different culture systems. In order to clarify the role of alpha2M in Abeta neurotoxicity, we challenged human neuroblastoma cell lines with activated alpha2M in combination with Abeta. Our results show that in neuroblastoma cells expressing high levels of LRP, the administration of activated alpha2M protects the cells from Abeta neurotoxicity. Conversely, when this receptor is not present alpha2M determines an increase in Abeta toxicity as evaluated by MTT and TUNEL assays. In LRP-negative cells transfected with the full-length human LRP, the addition of activated alpha2M resulted to be protective against Abeta-induced neurotoxicity. By means of recombinant proteins we ascribed the neurotoxic activity of alpha2M to its FP3 fragment which has been previously shown to bind and neutralize transforming growth factor-beta. These studies provide evidence for both a neuroprotective and neurotoxic role of alpha2M regulated by the expression of its receptor LRP.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources