Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human
- PMID: 11433012
- PMCID: PMC55761
- DOI: 10.1093/nar/29.13.2675
Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human
Erratum in
- Nucleic Acids Res 2001 Aug 15;29(16):2
Abstract
Multi-subunit transcription factors (TF) direct RNA polymerase (pol) III to synthesize a variety of essential small transcripts such as tRNAs, 5S rRNA and U6 snRNA. Use by pol III of both TATA-less and TATA-containing promoters, together with progress in the Saccharomyces cerevisiae and human systems towards elucidating the mechanisms of actions of the pol III TFs, provides a paradigm for eukaryotic gene transcription. Human and S.cerevisiae pol III components reveal good general agreement in the arrangement of orthologous TFs that are distributed along tRNA gene control elements, beginning upstream of the transcription initiation site and extending through the 3' terminator element, although some TF subunits have diverged beyond recognition. For this review we have surveyed the Schizosaccharomyces pombe database and identified 26 subunits of pol III and associated TFs that would appear to represent the complete core set of the pol III machinery. We also compile data that indicate in vivo expression and/or function of 18 of the fission yeast proteins. A high degree of homology occurs in pol III, TFIIIB, TFIIIA and the three initiation-related subunits of TFIIIC that are associated with the proximal promoter element, while markedly less homology is apparent in the downstream TFIIIC subunits. The idea that the divergence in downstream TFIIIC subunits is associated with differences in pol III termination-related mechanisms that have been noted in the yeast and human systems but not reviewed previously is also considered.
Figures
Similar articles
-
Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast.Mol Cell Biol. 2001 Oct;21(20):6870-81. doi: 10.1128/MCB.21.20.6870-6881.2001. Mol Cell Biol. 2001. PMID: 11564871 Free PMC article.
-
TFIIIC-independent in vitro transcription of yeast tRNA genes.J Mol Biol. 2000 Jun 9;299(3):601-13. doi: 10.1006/jmbi.2000.3783. J Mol Biol. 2000. PMID: 10835271
-
TFIIIC determines RNA polymerase III specificity at the TATA-containing yeast U6 promoter.Genes Dev. 1995 Apr 1;9(7):832-42. doi: 10.1101/gad.9.7.832. Genes Dev. 1995. PMID: 7705660
-
The RNA polymerase III transcription apparatus.J Mol Biol. 2001 Jun 29;310(1):1-26. doi: 10.1006/jmbi.2001.4732. J Mol Biol. 2001. PMID: 11419933 Review. No abstract available.
-
Regulation of tRNA synthesis by the general transcription factors of RNA polymerase III - TFIIIB and TFIIIC, and by the MAF1 protein.Biochim Biophys Acta Gene Regul Mech. 2018 Apr;1861(4):320-329. doi: 10.1016/j.bbagrm.2018.01.011. Epub 2018 Feb 6. Biochim Biophys Acta Gene Regul Mech. 2018. PMID: 29378333 Review.
Cited by
-
Human Maf1 negatively regulates RNA polymerase III transcription via the TFIIB family members Brf1 and Brf2.Int J Biol Sci. 2007 May 1;3(5):292-302. doi: 10.7150/ijbs.3.292. Int J Biol Sci. 2007. PMID: 17505538 Free PMC article.
-
Intergenic transcriptional interference is blocked by RNA polymerase III transcription factor TFIIIB in Saccharomyces cerevisiae.Genetics. 2014 Feb;196(2):427-38. doi: 10.1534/genetics.113.160093. Epub 2013 Dec 13. Genetics. 2014. PMID: 24336746 Free PMC article.
-
Identification of cis-acting sites for condensin loading onto budding yeast chromosomes.Genes Dev. 2008 Aug 15;22(16):2215-27. doi: 10.1101/gad.1675708. Genes Dev. 2008. PMID: 18708580 Free PMC article.
-
Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development.Front Genet. 2014 Apr 1;5:63. doi: 10.3389/fgene.2014.00063. eCollection 2014. Front Genet. 2014. PMID: 24744771 Free PMC article. Review.
-
In silico identification of Drosophila melanogaster genes encoding RNA polymerase subunits.MicroPubl Biol. 2020 Oct 20;2020:10.17912/micropub.biology.000320. doi: 10.17912/micropub.biology.000320. MicroPubl Biol. 2020. PMID: 33274328 Free PMC article. No abstract available.
References
-
- Willis I.M. (1993) RNA polymerase III. Genes, factors and transcriptional specificity. Eur. J. Biochem., 212, 1–11. - PubMed
-
- Geiduschek E.P. and Tocchini-Valentini,G.P. (1988) Transcription by RNA polymerase III. Annu. Rev. Biochem., 57, 873–914. - PubMed
-
- Kassavetis G.A., Bardeleben,C., Bartholomew,B., Braun,B.R., Joazeiro,C.A.P., Pisano,M. and Geiduschek,E.P. (1994) In Conaway,R.C. and Conaway,J.W. (eds), Transcription: Mechanisms and Regulation. Raven Press, New York, NY, pp. 107–126.
-
- Chedin S., Ferri,M.L., Andrau,J.C., Jourdain,S., Lefebvre,O., Wermer,M., Carles,C. and Sentenac,A. (1998) The yeast RNA polymerase III transcription machinery: a paradigm for eukaryotic gene activation. Cold Spring Harbor Symp. Quant. Biol ., 63, 381–389. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous