Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb 27;40(8):2548-54.
doi: 10.1021/bi002312k.

Vulnerability of synaptosomes from apoE knock-out mice to structural and oxidative modifications induced by A beta(1-40): implications for Alzheimer's disease

Affiliations

Vulnerability of synaptosomes from apoE knock-out mice to structural and oxidative modifications induced by A beta(1-40): implications for Alzheimer's disease

C M Lauderback et al. Biochemistry. .

Abstract

Apolipoprotein E (apoE) plays an important role in the response to central nervous system injury. The e4 allele of apoE and amyloid beta-peptide (Abeta) are associated with Alzheimer's disease (AD) and may be central to the pathogenesis of this disorder. Recent studies demonstrate evidence for neurodegeneration and increased lipid peroxidation in transgenic mice lacking apoE (KO). In the current study, synaptosomes were prepared from apoE KO mice to determine the role of apoE in synaptic membrane structure and to determine susceptibility to oxidative damage by Abeta(1-40). ApoE KO mice exhibited structural modifications to lipid and protein components of synaptosomal membranes as determined by electron paramagnetic resonance in conjunction with lipid- and protein- specific spin labels. Incubation with 5 microM Abeta(1-40) resulted in more severe oxidative modifications to proteins and lipids in apoE KO synaptosomes as measured by protein carbonyls, an index of protein oxidation, and TBARs and protein-bound 4-hydroxynonenal (HNE), markers of lipid oxidation. Together, these data support a role for apoE in the modulation of oxidative injury and in the maintenance of synaptic integrity and are discussed with reference to alterations in AD brain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms