Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Jan 20;279(2):414-21.
doi: 10.1006/viro.2000.0736.

Vesicular stomatitis virus glycoprotein containing the entire green fluorescent protein on its cytoplasmic domain is incorporated efficiently into virus particles

Affiliations
Free article
Comparative Study

Vesicular stomatitis virus glycoprotein containing the entire green fluorescent protein on its cytoplasmic domain is incorporated efficiently into virus particles

K P Dalton et al. Virology. .
Free article

Abstract

The envelope glycoprotein (G) of vesicular stomatitis virus (VSV) contains a short cytoplasmic domain of 29 amino acids. To determine whether VSV particle assembly could accommodate a G protein with a large cytoplasmic domain, we constructed a gene called G/GFP encoding the VSV G protein with the 27-kDa green fluorescent protein linked to its cytoplasmic domain. This gene was inserted into the infectious clone of VSV and we recovered a recombinant virus expressing G/GFP from this extra gene. This VSV-G/GFP virus grew to titers equivalent to that of wild-type virus and was stable upon passaging. The G/GFP protein formed mixed trimers containing an average of two wild-type G proteins and one G/GFP protein. This heterotrimeric protein was expressed on the cell surface, and was incorporated into virus particles with almost the same efficiency as wild-type VSV G protein. These results indicate that there is substantial space available between the viral membrane and the nucleocapsid that can accommodate such a large cytoplasmic domain. The green fluorescent virus particles were readily visualized by fluorescence microscopy and had a normal morphology by electron microscopy. To determine whether virus assembly could occur efficiently when all G proteins contained the GFP cytoplasmic domain, a VSV recombinant in which the G gene was completely replaced by the VSV-G/GFP gene was recovered. This virus rapidly lost expression of the GFP protein sequence through introduction of a stop codon within the sequence encoding the G cytoplasmic domain, indicating strong selection against homotrimeric G protein bearing such a large cytoplasmic domain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources