Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Jan 1;52(1):130-6.
doi: 10.1002/1097-0029(20010101)52:1<130::AID-JEMT14>3.0.CO;2-6.

Cell death in the choroid plexus following transient forebrain global ischemia in the rat

Affiliations
Review

Cell death in the choroid plexus following transient forebrain global ischemia in the rat

M Ferrand-Drake. Microsc Res Tech. .

Abstract

Following a complete disruption of blood flow to the brain, cerebral ischemia, a specific neuronal population, namely the CA1 pyramidal neurons in the hippocampus, will die a delayed type of cell death. This is often referred to as "delayed neuronal death" (DND). It is not known why it takes around 48 hours for these cells to die. It is very often speculated that events, intrinsic to the CA1 neurons, regulate their demise, whereas it is less often considered that extrinsic mechanisms also could play an important role for the development of DND. We discovered that in addition to the CA1 pyramidal neurons, cells in the choroid plexus were TUNEL (terminaldeoxynucleotidyl-mediated biotin-dUTP nick-end labeling)-positive following transient forebrain global ischemia. The time course and the number of TUNEL-positive cells were determined. A dramatic increase in the number of TUNEL-positive cells in the choroid plexus was seen at 18, 24, and at 36 hours of recovery, but not at 48 hours of recovery following 15 minutes of transient forebrain global ischemia. No TUNEL-positive cells were seen at 24 hours of recovery in the CA1 region. The cell death in the choroid plexus thus preceded the occurrence of cell death in the CA1 region. Massive cell death in the choroid plexus will inevitably lead to a leaky blood-CSF barrier, which in turn will allow substances to enter the ventricular system and from there reach the brain parenchyma. We, therefore, conclude that choroid plexus cell death may adversely affect the outcome of CA1 pyramidal neurons following transient forebrain global ischemia, through, e.g., a disruption of the blood-cerebro spinal fluid barrier. Alternatively, the choroid plexus may produce factors, which can affect the outcome of neurons.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources