Centrioles and kinetosomes: form, function, and evolution
- PMID: 11125699
- DOI: 10.1086/393621
Centrioles and kinetosomes: form, function, and evolution
Abstract
We review the literature on centrioles, kinetosomes, and other microtubule organizing centers (MTOCs) in animal, plant, and protist cells in the context of the Henneguy-Lenhossék theory of 1899. This 100-year-old cytological theory, valid today, defines centrioles and kinetosomes as identical, homologous but developmentally distinguishable structures. Centrioles (paired constituents of mitotic centrosomes in animal cells) become kinetosomes (ciliary basal bodies) when their 9(2) + 2 microtubular axonemes grow outward. During mitosis in Chlamydomonas, the kinetosomes are segregated at the poles of the mitotic spindle. Mitotic centrioles function as organelles of motility in many protists, though nowhere is this centriole-kinetosome relation more clearly seen than in the karyomastigont structure (kinetosome-nucleus-Golgi complex organellar system) of the trichomonads and other amitochondriate parabasalids. Constituent sequences of mitotic spindle-centriole-kinetosome proteins (gamma-tubulin, pericentrin, and the cyclin-dependent kinases Cdc2 and Cdc3, members of the centrin family) are conserved across taxa, occurring in animal and protist centrioles, plant MTOCs, and fungal spindle pole bodies. We review ultrastructural and molecular data on these and other important MTOC proteins, and present a model whereby the cytological arrangement of centrioles (i.e., orthogonal pairs as in centrosomes) may have originated. We compare and contrast endogenous and exogenous (bacterial symbiont integration) models for the evolution of centriole-kinetosomes (c-ks), with illustrative examples from Kingdom Protoctista.
Similar articles
-
Centrin-2 is required for centriole duplication in mammalian cells.Curr Biol. 2002 Aug 6;12(15):1287-92. doi: 10.1016/s0960-9822(02)01019-9. Curr Biol. 2002. PMID: 12176356
-
The conversion of centrioles to centrosomes: essential coupling of duplication with segregation.J Cell Biol. 2011 May 16;193(4):727-39. doi: 10.1083/jcb.201101109. J Cell Biol. 2011. PMID: 21576395 Free PMC article.
-
Elongation of centriolar microtubule triplets contributes to the formation of the mitotic spindle in gamma-tubulin-depleted cells.J Cell Sci. 2004 Nov 1;117(Pt 23):5497-507. doi: 10.1242/jcs.01401. Epub 2004 Oct 12. J Cell Sci. 2004. PMID: 15479719
-
Mechanism and Regulation of Centriole and Cilium Biogenesis.Annu Rev Biochem. 2019 Jun 20;88:691-724. doi: 10.1146/annurev-biochem-013118-111153. Epub 2019 Jan 11. Annu Rev Biochem. 2019. PMID: 30601682 Free PMC article. Review.
-
Microtubule cytoskeleton and morphogenesis in the amoebae of the myxomycete Physarum polycephalum.Biol Cell. 1988;63(2):239-48. doi: 10.1016/0248-4900(88)90061-5. Biol Cell. 1988. PMID: 3060203 Review.
Cited by
-
Structure of Motile Cilia.Subcell Biochem. 2022;99:471-494. doi: 10.1007/978-3-031-00793-4_15. Subcell Biochem. 2022. PMID: 36151386
-
Centrosome-associated RNA in surf clam oocytes.Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9034-8. doi: 10.1073/pnas.0602859103. Epub 2006 Jun 5. Proc Natl Acad Sci U S A. 2006. PMID: 16754862 Free PMC article.
-
Basal body duplication and maintenance require one member of the Tetrahymena thermophila centrin gene family.Mol Biol Cell. 2005 Aug;16(8):3606-19. doi: 10.1091/mbc.e04-10-0919. Epub 2005 Jun 8. Mol Biol Cell. 2005. PMID: 15944224 Free PMC article.
-
Strasburger's legacy to mitosis and cytokinesis and its relevance for the Cell Theory.Protoplasma. 2012 Oct;249(4):1151-62. doi: 10.1007/s00709-012-0404-8. Epub 2012 Apr 15. Protoplasma. 2012. PMID: 22526203
-
Molecular characterization of centriole assembly in ciliated epithelial cells.J Cell Biol. 2007 Jul 2;178(1):31-42. doi: 10.1083/jcb.200703064. J Cell Biol. 2007. PMID: 17606865 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Miscellaneous