Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep;141(9):3328-36.
doi: 10.1210/endo.141.9.7673.

Insulin receptor substrate-1-mediated enhancement of growth hormone-induced mitogen-activated protein kinase activation

Affiliations

Insulin receptor substrate-1-mediated enhancement of growth hormone-induced mitogen-activated protein kinase activation

L Liang et al. Endocrinology. 2000 Sep.

Abstract

Interaction of GH with the cell-surface GH receptor (GHR) causes activation of the GHR-associated tyrosine kinase, JAK2, and consequent triggering of signaling cascades including the STAT, Ras/Raf/MEK1/MAP kinase, and insulin receptor substrate-1(IRS-1)/PI3kinase pathways. We previously showed that IRS- and GHR-deficient 32D cells that stably express the rabbit GHR and rat IRS-1 (32D-rbGHR-IRS-1) exhibited markedly enhanced GH-induced proliferation and MAP kinase (ERK1 and ERK2) activation compared with cells expressing only the GHR (32D-rbGHR). We now examine biochemical mechanism(s) by which IRS-1 augments GH-induced MAP kinase activation. Time-course experiments revealed a similarly transient (maximal at 15 min) GH-induced ERK1 and ERK2 activation in both 32D-rbGHR and 32D-rbGHR-IRS-1 cells, but, consistent with our prior findings, substantially greater activation was seen in the IRS-1-containing cells. In both cells, GH-induced MAP kinase activation was markedly blunted by the MEK1 inhibitor, PD98059, but not by the PKC inhibitor, GF109203X. Interestingly, pretreatment with the PI3K inhibitor, wortmannin (EC50 approximately 10 nM), significantly reduced GH-induced MAP kinase activation in both 32D-rbGHR and 32D-rbGHR-IRS-1 cells. This same pattern in both cells of IRS-1-dependent augmentation and IRS-1-independent wortmannin sensitivity was also observed for GH-induced activation of Akt and MEK1 (using state-specific antibody blotting for both), despite the lack of difference in GHR, JAK2, SHP-2, p85, Akt, Ras, Raf-1, MEK1, ERK1, or ERK2 abundance between the two cells. A different PI3K inhibitor, LY294002 (50 microM), substantially inhibited (roughly 72%) GH-induced MAP kinase activation in 32D-rbGHR-IRS-1 cells, but only marginally (and statistically insignificantly) inhibited GH-induced MAP kinase activation in 32D-rbGHR cells. Because GH-induced Akt activation was completely inhibited in both cells by the same concentration of LY294002, these findings indicate that the wortmannin sensitivity of both the IRS-1-independent and -dependent GH-induced MAP kinase activation may reflect the activity of another wortmannin-sensitive target(s) in addition to PI3K in mediation of GH-induced MAP kinase activation in these cells. Notably, GH-induced STAT5 tyrosine phosphorylation, unlike Akt or MAPK activation, did not differ between the cells. Finally, while GH promoted accumulation of activated Ras in both cells, both basal and GH-induced activated Ras levels were greater in cells expressing IRS-1 than in 32D-rbGHR cells. These data indicate that while GH induces tyrosine phosphorylation of STAT5 and activation of the Ras/Raf/MEK1/MAPK and PI3K pathways, IRS-1 expression augments the latter two more than the former.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms