Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May 25;257(1):162-71.
doi: 10.1006/excr.2000.4875.

Is beta-galactosidase staining a marker of senescence in vitro and in vivo?

Affiliations

Is beta-galactosidase staining a marker of senescence in vitro and in vivo?

J Severino et al. Exp Cell Res. .

Abstract

Cytochemically detectable beta-galactosidase (beta-gal) at pH 6.0 has been reported to increase during the replicative senescence of fibroblast cultures and has been used widely as a marker of cellular senescence in vivo and in vitro. In this study, we have characterized changes in senescence-associated (SA) beta-gal staining in early and late passage cultures, cultures established from donors of different ages, virally immortalized cells, and tissue slices obtained from donors of different ages. The effects of different culture conditions were also examined. While we confirm the previous report that SA beta-gal staining increased in low-density cultures of proliferatively senescent cells, we were unable to demonstrate that it is a specific marker for aging in vitro. Cultures established from donors of different ages stained for SA beta-gal activity as a function of in vitro replicative age, not donor age. We also failed to observe any differences in SA beta-gal staining in skin cells in situ as a marker of aging in vivo. The level of cytochemically detectable SA beta-gal was elevated in confluent nontransformed fibroblast cultures, in immortal fibroblast cultures that had reached a high cell density, and in low-density, young, normal cultures oxidatively challenged by treatment with H2O2. Although we clearly demonstrate that SA beta-gal staining in cells is increased under a variety of different conditions, the interpretation of increased staining remains unclear, as does the question of whether the same mechanisms are responsible for the increased SA beta-gal staining observed in senescent cells and changes observed in cells under other conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources