Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Nov 18:892:223-46.
doi: 10.1111/j.1749-6632.1999.tb07798.x.

Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models

Affiliations
Review

Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models

E Shafrir et al. Ann N Y Acad Sci. .

Abstract

Animals with genetically or nutritionally induced insulin resistance and Type 2 diabetes comprise two groups: those with resilient beta-cells, e.g., ob/ob mice or fa/fa rats, capable of longstanding compensatory insulin hypersecretion and those with labile beta-cells in which the secretion pressure leads to beta-cell degranulation and apoptosis, e.g., db/db mice and Psammomys gerbils (sand rats). Psammomys features low insulin receptor density; on a relatively high energy diet it becomes hyperinsulinemic and hyperglycemic. In hyperinsulinemic clamp the hepatic glucose production is only partially suppressed by insulin, even in the normoglycemic state. The capacity of insulin to activate muscle and liver receptor tyrosine kinase is nearly abolished. GLUT4 content and mRNA are markedly reduced. Hyperinsulinemia was also demonstrated to inhibit insulin signaling and glucose transport in several other species. Among the factors affecting the insulin signaling pathway, phosphorylation of serine/threonine appears to be the prominent cause of receptor malfunction as inferred from the finding of overexpression of PKC epsilon isoforms in the muscle and liver of Psammomys. The insulin resistance syndrome progressing in animals with labile beta-cells to overt diabetes and beta-cell failure is a "thrifty gene" characteristic. This is probably also true for human populations emerging from food scarcity into nutritional affluence, inappropriate for their metabolic capacity. Thus, the nutritionally induced hyperinsulinemia, associated with PKC epsilon activation may be looked upon from the molecular point of view as "PKC epsilon overexpression syndrome."

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources