Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul 21;275(29):22037-47.
doi: 10.1074/jbc.M001813200.

S-Nitrosocysteine increases palmitate turnover on Ha-Ras in NIH 3T3 cells

Affiliations
Free article

S-Nitrosocysteine increases palmitate turnover on Ha-Ras in NIH 3T3 cells

T L Baker et al. J Biol Chem. .
Free article

Abstract

Ha-Ras is modified by isoprenoid on Cys(186) and by reversibly attached palmitates at Cys(181) and Cys(184). Ha-Ras loses 90% of its transforming activity if Cys(181) and Cys(184) are changed to serines, implying that palmitates make important contributions to oncogenicity. However, study of dynamic acylation is hampered by an absence of methods for acutely manipulating Ha-Ras palmitoylation in living cells. S-nitrosocysteine (SNC) and, to a more modest extent, S-nitrosoglutathione were found to rapidly increase [(3)H]palmitate incorporation into cellular or oncogenic Ha-Ras in NIH 3T3 cells. In contrast, SNC decreased [(3)H]palmitate labeling of the transferrin receptor and caveolin. SNC accelerated loss of [(3)H]palmitate from Ha-Ras, implying that SNC stimulated deacylation and permitted subsequent reacylation of Ha-Ras. SNC also decreased Ha-Ras GTP binding and inhibited phosphorylation of the kinases ERK1 and ERK2 in NIH 3T3 cells. Thus, SNC altered two important properties of Ha-Ras activation state and lipidation. These results identify SNC as a new tool for manipulating palmitate turnover on Ha-Ras and for studying requirements of repalmitoylation and the relationship between palmitate cycling, membrane localization, and signaling by Ha-Ras.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources