Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 May 5;298(3):365-77.
doi: 10.1006/jmbi.2000.3695.

Evolutionary inventions and continuity of CORE-SINEs in mammals

Affiliations

Evolutionary inventions and continuity of CORE-SINEs in mammals

N Gilbert et al. J Mol Biol. .

Abstract

We characterized short interspersed elements (SINEs), of the CORE-suprafamily in egg-laying (monotremes), pouched (marsupials) and placental mammals. Five families of these repeats distinguished by the presence of distinct LINE-related 3'-segments shared tRNA-like promoter and the central core region. The putative active elements were reconstructed from the alignment of genomic repeats representing molecular fossils of sequences that amplified in the past and since then underwent multiple mutations. Their mode of proliferation by retroposition was indicated by the presence of: (1) internal RNA PolIII promoter; (2) simple sequence repeated tail; (3) direct repeats; and (4) subfamilies recording the evolution of elements. The copy number of CORE-SINEs in placental genomes was estimated at about 300,000; they were highly divergent and apparently ceased to amplify before radiation of these lineages. On the other hand, among almost half a million fossil elements present in marsupials and monotremes, the youngest subfamilies could still be retropositionally active. CORE-SINEs terminate in sequence repeats of a few nucleotides similar to their 3'-segment LINE-homologues, CR1, L2 and Bov-B. These three LINE elements fall into clades distinct from that of L1 elements which, similar to their co-amplifying SINEs, end in a poly(A) tail. We propose a model in which new CORE-families, with distinct 3'-segments, are created at the RNA level due to template switching between LINE and CORE-RNA during reverse transcription. The proposed mechanism suggests that such an adaptation to the changing amplification machinery facilitated the survival and prosperity of CORE-elements over long evolutionary periods in different lineages.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources