Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000;95(1):183-8.
doi: 10.1016/s0306-4522(99)00423-6.

Mitochondrial calcium accumulation following activation of vanilloid (VR1) receptors by capsaicin in dorsal root ganglion neurons

Affiliations

Mitochondrial calcium accumulation following activation of vanilloid (VR1) receptors by capsaicin in dorsal root ganglion neurons

V N Dedov et al. Neuroscience. 2000.

Abstract

Stimulation of the vanilloid (capsaicin) receptor (VR1), currently viewed as a molecular integrator of chemical and physical noxious stimuli, evoked intracellular Ca2+ transients in a capsaicin-sensitive subpopulation of rat dorsal root ganglion neurons. These were comprised of an initial fast rise (seconds) followed by a long-lasting intracellular Ca2+ recovery (tens of minutes). The rate of intracellular Ca2+ recovery was dependent on the magnitude of intracellular Ca2+ transients. Opening of voltage-operated Ca2+ channels in the same neurons by K+ depolarization evoked intracellular Ca2+ elevation of a similar amplitude and rate of rise; however, the recovery of intracellular Ca2+ to the prestimulated level was significantly faster. A mitochondrial uncoupler (10 microM carbonyl cyanide m-chlorophenylhydrasone) was used to reveal the role of mitochondria in intracellular Ca2+ buffering. Carbonyl cyanide m-chlorophenylhydrasone-evoked elevation in intracellular Ca2+ was greater in neurons previously stimulated with capsaicin compared with KCl. Neither extracellular Ca2+ nor ATP depletion influenced significantly the carbonyl cyanide m-chlorophenylhydrasone-sensitive intracellular Ca2+ elevation in neurons loaded with Ca2+ via vanilloid 1 receptor stimulation. The effects of carbonyl cyanide m-chlorophenylhydrasone suggest that the amount of Ca2+ buffered by mitochondria is greater when extracellular Ca2+ enters the neuron via the vanilloid 1 receptor channel than via voltage-operated Ca2+ channels. The long duration of intracellular Ca2+ decline in neurons stimulated with capsaicin, which depends on the amount of Ca2+ buffered by mitochondria, may reflect a specific mechanism of Ca2+ buffering following activation the pain receptor VR1.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources