Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec 1;18(23):6682-93.
doi: 10.1093/emboj/18.23.6682.

An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IkappaBalpha

Affiliations

An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IkappaBalpha

C Johnson et al. EMBO J. .

Abstract

The potent transcriptional activities of Rel/NF-kappaB proteins are regulated in the cytoplasm and nucleus by the inhibitor, IkappaBalpha. The mechanism, by which IkappaBalpha can either sequester NF-kappaB in the cytoplasm or act as a nuclear post-induction repressor of NF-kappaB, is uncertain. We find that IkappaBalpha shuttles continuously between the nucleus and cytoplasm. This shuttling requires a previously unidentified CRM1-dependent nuclear export signal (NES) located within the N-terminal domain of IkappaBalpha at amino acids 45-55. Deletion or mutation of the N-terminal NES results in nuclear localization of IkappaBalpha. NF-kappaB (p65) association with IkappaBalpha affects steady-state localization but does not inhibit its shuttling. Endogenous complexes of IkappaBalpha-NF-kappaB shuttle and will accumulate in the nucleus when CRM1 export is blocked. We find TNFalpha can activate the nuclear IkappaBalpha-NF-kappaB complexes by the classical mechanism of proteasome-mediated degradation of IkappaBalpha. These studies reveal a more dynamic nucleocytoplasmic distribution for IkappaBalpha and NF-kappaB suggesting previously unknown strategies for regulating this ubiquitous family of transcription activators.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms