Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Aug 6;274(32):22610-7.
doi: 10.1074/jbc.274.32.22610.

Plant importin alpha binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin beta

Affiliations
Free article
Comparative Study

Plant importin alpha binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin beta

S Hübner et al. J Biol Chem. .
Free article

Abstract

Nuclear import of conventional nuclear localization sequence (NLS)-containing proteins initially involves recognition by the importin (IMP) alpha/beta heterodimer, where IMPalpha binds the NLS and IMPbeta targets the IMPalpha/NLS-containing protein complex to the nuclear pore. Here we examine IMPalpha from the plant Arabidopsis thaliana (At-IMPalpha), which exhibits nuclear envelope localization typical of IMPbeta rather than IMPalpha in other eukaryotic cell systems. We show that At-IMPalpha recognizes conventional NLSs of two different types with high affinity (K(d) of 5-10 nM), in contrast to mouse IMPalpha (m-IMPalpha), which exhibits much lower affinity (K(d) of 50-70 nM) and only achieves high affinity in the presence of m-IMPbeta. Unlike m-IMPalpha, At-IMPalpha is thus a high affinity NLS receptor in the absence of IMPbeta. Interestingly, At-IMPalpha was also able to bind with high affinity to NLSs recognized specifically by m-IMPbeta and not m-IMPalpha, including that of the maize transcription factor Opaque-2. Reconstitution of nuclear import in vitro indicated that in the absence of exogenous IMPbeta subunit but dependent on RanGDP and NTF2, At-IMPalpha was able to mediate nuclear accumulation to levels comparable with those mediated by m-IMPalpha/beta. Neither m-IMPalpha nor -beta was able to mediate nuclear import in the absence of the other subunit. At-IMPalpha's novel NLS recognition and nuclear transport properties imply that plants may possess an IMPalpha-mediated nuclear import pathway independent of IMPbeta in addition to that mediated by IMPalpha/beta.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources