Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1997 Dec;41(12):2686–2692. doi: 10.1128/aac.41.12.2686

Flow cytometric analysis of herpes simplex virus type 1 susceptibility to acyclovir, ganciclovir, and foscarnet.

I Pavić 1, A Hartmann 1, A Zimmermann 1, D Michel 1, W Hampl 1, I Schleyer 1, T Mertens 1
PMCID: PMC164189  PMID: 9420039

Abstract

We established a quantitative flow cytometric method for determination of herpes simplex virus type 1 (HSV-1) susceptibility to acyclovir (ACV), ganciclovir, and foscarnet in vitro. Susceptibility was defined in terms of the drug concentration which reduced the number of cells expressing HSV-1 glycoprotein C (gpC) with a fluorescence intensity of > or =10(2) by 50% (IC50). Flow cytometry allowed us to use a high (1.0) as well as a low (0.005) multiplicity of infection, and determination of the IC50 was possible after one or more viral replicative cycles. IC50s were dependent on virus input and on time postinfection. In mixture experiments, 1 to 2% resistant viruses added to a sensitive strain could be detected. The results obtained by flow cytometry showed a good qualitative correlation with those achieved by cytopathic effect inhibitory assay. However, flow cytometry might detect more quantitative differences in drug susceptibility, especially among resistant strains, as confirmed also by determination of intracellular drug phosphorylation. The mean IC50s for ACV-sensitive strains were 0.45 to 1.47 microM, and those for ACV-resistant strains were between 140 and 3,134 microM. Flow cytometric analysis was fast and accurate, automatizable, and highly reproducible. Flow cytometry may be a more powerful tool than standard cytopathic effect-based assays and could have advantages for the detection of low levels of drug resistance or mixtures of sensitive and resistant virus strains.

Full Text

The Full Text of this article is available as a PDF (170.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collins P., Bauer D. J. Relative potencies of anti-herpes compounds. Ann N Y Acad Sci. 1977 Mar 4;284:49–59. doi: 10.1111/j.1749-6632.1977.tb21936.x. [DOI] [PubMed] [Google Scholar]
  2. Ellis M. N., Keller P. M., Fyfe J. A., Martin J. L., Rooney J. F., Straus S. E., Lehrman S. N., Barry D. W. Clinical isolate of herpes simplex virus type 2 that induces a thymidine kinase with altered substrate specificity. Antimicrob Agents Chemother. 1987 Jul;31(7):1117–1125. doi: 10.1128/aac.31.7.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Erlich K. S., Mills J., Chatis P., Mertz G. J., Busch D. F., Follansbee S. E., Grant R. M., Crumpacker C. S. Acyclovir-resistant herpes simplex virus infections in patients with the acquired immunodeficiency syndrome. N Engl J Med. 1989 Feb 2;320(5):293–296. doi: 10.1056/NEJM198902023200506. [DOI] [PubMed] [Google Scholar]
  4. Gadler H., Larsson A., Sølver E. Nucleic acid hybridization, a method to determine effects of antiviral compounds on herpes simplex virus type 1 DNA synthesis. Antiviral Res. 1984 Apr;4(1-2):63–70. doi: 10.1016/0166-3542(84)90026-3. [DOI] [PubMed] [Google Scholar]
  5. Gadler H. Nucleic acid hybridization for measurement of effects of antiviral compounds on human cytomegalovirus DNA replication. Antimicrob Agents Chemother. 1983 Sep;24(3):370–374. doi: 10.1128/aac.24.3.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jennings S. R., Lippe P. A., Pauza K. J., Spear P. G., Pereira L., Tevethia S. S. Kinetics of expression of herpes simplex virus type 1-specific glycoprotein species on the surfaces of infected murine, simian, and human cells: flow cytometric analysis. J Virol. 1987 Jan;61(1):104–112. doi: 10.1128/jvi.61.1.104-112.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kruppenbacher J. P., Kläss R., Eggers H. J. A rapid and reliable assay for testing acyclovir sensitivity of clinical herpes simplex virus isolates independent of virus dose and reading time. Antiviral Res. 1994 Jan;23(1):11–22. doi: 10.1016/0166-3542(94)90029-9. [DOI] [PubMed] [Google Scholar]
  8. Langlois M., Allard J. P., Nugier F., Aymard M. A rapid and automated colorimetric assay for evaluating the sensitivity of herpes simplex strains to antiviral drugs. J Biol Stand. 1986 Jul;14(3):201–211. doi: 10.1016/0092-1157(86)90004-1. [DOI] [PubMed] [Google Scholar]
  9. McLaren C., Ellis M. N., Hunter G. A. A colorimetric assay for the measurement of the sensitivity of herpes simplex viruses to antiviral agents. Antiviral Res. 1983 Nov;3(4):223–234. doi: 10.1016/0166-3542(83)90001-3. [DOI] [PubMed] [Google Scholar]
  10. McSharry J. J. Uses of flow cytometry in virology. Clin Microbiol Rev. 1994 Oct;7(4):576–604. doi: 10.1128/cmr.7.4.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Michel D., Pavić I., Zimmermann A., Haupt E., Wunderlich K., Heuschmid M., Mertens T. The UL97 gene product of human cytomegalovirus is an early-late protein with a nuclear localization but is not a nucleoside kinase. J Virol. 1996 Sep;70(9):6340–6346. doi: 10.1128/jvi.70.9.6340-6346.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. PLUMMER G., BENYESH-MELNICK M. A PLAQUE REDUCTION NEUTRALIZATION TEST FOR HUMAN CYTOMEGALOVIRUS. Proc Soc Exp Biol Med. 1964 Oct;117:145–150. doi: 10.3181/00379727-117-29520. [DOI] [PubMed] [Google Scholar]
  13. Prichard M. N., Turk S. R., Coleman L. A., Engelhardt S. L., Shipman C., Jr, Drach J. C. A microtiter virus yield reduction assay for the evaluation of antiviral compounds against human cytomegalovirus and herpes simplex virus. J Virol Methods. 1990 Apr;28(1):101–106. doi: 10.1016/0166-0934(90)90091-s. [DOI] [PubMed] [Google Scholar]
  14. Rabalais G. P., Levin M. J., Berkowitz F. E. Rapid herpes simplex virus susceptibility testing using an enzyme-linked immunosorbent assay performed in situ on fixed virus-infected monolayers. Antimicrob Agents Chemother. 1987 Jun;31(6):946–948. doi: 10.1128/aac.31.6.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rosenthal K. S., Hodnichak C. M., Summers J. L. Flow cytometric evaluation of anti-herpes drugs. Cytometry. 1987 Jul;8(4):392–395. doi: 10.1002/cyto.990080408. [DOI] [PubMed] [Google Scholar]
  16. Safrin S., Elbeik T., Phan L., Robinson D., Rush J., Elbaggari A., Mills J. Correlation between response to acyclovir and foscarnet therapy and in vitro susceptibility result for isolates of herpes simplex virus from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 1994 Jun;38(6):1246–1250. doi: 10.1128/aac.38.6.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shipman C., Jr, Smith S. H., Carlson R. H., Drach J. C. Antiviral activity of arabinosyladenine and arabinosylhypoxanthine in herpes simplex virus-infected KB cells: selective inhibition of viral deoxyribonucleic acid synthesis in synchronized suspension cultures. Antimicrob Agents Chemother. 1976 Jan;9(1):120–127. doi: 10.1128/aac.9.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Steele-Mortimer O. A., Meier-Ewert H., Löser R., Hasmann M. J. Flow cytometric analysis of virus-infected cells and its potential use for screening antiviral agents. J Virol Methods. 1990 Mar;27(3):241–252. doi: 10.1016/0166-0934(90)90092-t. [DOI] [PubMed] [Google Scholar]
  19. Wahren B., Harmenberg J., Sundqvist V. A., Levén B., Sköldenberg B. A novel method for determining the sensitivity of herpes simplex virus to antiviral compounds. J Virol Methods. 1983 Mar;6(3):141–149. doi: 10.1016/0166-0934(83)90026-5. [DOI] [PubMed] [Google Scholar]
  20. Wentworth B. B., French L. Plaque assay of cytomegalovirus strains of human origin. Proc Soc Exp Biol Med. 1970 Nov;135(2):253–258. doi: 10.3181/00379727-135-35031. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES