Abstract
Culturing and comparing the discrete stages of tumorigenesis provide a route to defining important components of the cancer phenotype and, in addition, present the opportunity to establish cell cultures more representative of normal cells than the ultimate malignant cancer cells. Herein we report that preneoplastic foci in one multistep tumorigenesis pathway can be cultured in vitro and show that they preserve distinctive characteristics of the normal cells from which they arose, pancreatic beta cells. In the RIP1-Tag2 line of transgenic mice, which express the simian virus 40 T antigen in insulin-producing beta cells, pancreatic islets develop into vascularized tumors in a multistage pathway. We established conditions for reproducible derivation of beta-cell lines from individual hyperplastic islets that have not yet developed into solid tumors. Most of these cell lines, designated beta HC, release insulin at physiological concentrations of glucose. In contrast to tumor-derived lines (beta TC), which are not properly regulated, the ability of the beta HC lines to respond correctly to glucose correlated with maintenance of normally depressed levels of low-Km hexokinases. Glutamic acid decarboxylase (GAD), an early autoantigen in type I diabetes, was detected in most of the beta HC lines. The relative levels of the two forms of this enzyme (GAD65 and GAD67) varied significantly between the different cell lines, suggesting independent regulation. Class I major histocompatibility complex antigens were detected on the beta HC cells, and the levels of surface major histocompatibility complex expression correlated with their capacity to serve as targets in a cytotoxic T-cell killing assay. The beta HC lines will be of value for studies of beta-cell physiology, autoantigenicity, and tumor development. This work suggests the possibility of culturing preneoplastic stages of other cancers, both to address the mechanisms of transformation and to provide a source of cells that maintain important qualities of their normal progenitors.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arora K. K., Fanciulli M., Pedersen P. L. Glucose phosphorylation in tumor cells. Cloning, sequencing, and overexpression in active form of a full-length cDNA encoding a mitochondrial bindable form of hexokinase. J Biol Chem. 1990 Apr 15;265(11):6481–6488. [PubMed] [Google Scholar]
- Asano T., Shibasaki Y., Lin J. L., Akanuma Y., Takaku F., Oka Y. The nucleotide sequence of cDNA for a mouse liver-type glucose transporter protein. Nucleic Acids Res. 1989 Aug 11;17(15):6386–6386. doi: 10.1093/nar/17.15.6386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baekkeskov S., Aanstoot H. J., Christgau S., Reetz A., Solimena M., Cascalho M., Folli F., Richter-Olesen H., De Camilli P., Camilli P. D. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990 Sep 13;347(6289):151–156. doi: 10.1038/347151a0. [DOI] [PubMed] [Google Scholar]
- Baekkeskov S., Kanatsuna T., Klareskog L., Nielsen D. A., Peterson P. A., Rubenstein A. H., Steiner D. F., Lernmark A. Expression of major histocompatibility antigens on pancreatic islet cells. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6456–6460. doi: 10.1073/pnas.78.10.6456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berthillier G., Colobert L., Richard M., Got R. Glucokinases du foie de rat. Purification et propriétés des formes particulées. Biochim Biophys Acta. 1970 Apr 22;206(1):1–16. doi: 10.1016/0005-2744(70)90076-8. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Christgau S., Aanstoot H. J., Schierbeck H., Begley K., Tullin S., Hejnaes K., Baekkeskov S. Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. J Cell Biol. 1992 Jul;118(2):309–320. doi: 10.1083/jcb.118.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christgau S., Schierbeck H., Aanstoot H. J., Aagaard L., Begley K., Kofod H., Hejnaes K., Baekkeskov S. Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble. J Biol Chem. 1991 Nov 5;266(31):21257–21264. [PubMed] [Google Scholar]
- Efrat S., Leiser M., Surana M., Tal M., Fusco-Demane D., Fleischer N. Murine insulinoma cell line with normal glucose-regulated insulin secretion. Diabetes. 1993 Jun;42(6):901–907. doi: 10.2337/diab.42.6.901. [DOI] [PubMed] [Google Scholar]
- Efrat S., Linde S., Kofod H., Spector D., Delannoy M., Grant S., Hanahan D., Baekkeskov S. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9037–9041. doi: 10.1073/pnas.85.23.9037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erlander M. G., Tillakaratne N. J., Feldblum S., Patel N., Tobin A. J. Two genes encode distinct glutamate decarboxylases. Neuron. 1991 Jul;7(1):91–100. doi: 10.1016/0896-6273(91)90077-d. [DOI] [PubMed] [Google Scholar]
- Fernandez-Mejia C., Davidson M. B. Regulation of glucokinase and proinsulin gene expression and insulin secretion in RIN-m5F cells by dexamethasone, retinoic acid, and thyroid hormone. Endocrinology. 1992 Mar;130(3):1660–1668. doi: 10.1210/endo.130.3.1537314. [DOI] [PubMed] [Google Scholar]
- Gazdar A. F., Chick W. L., Oie H. K., Sims H. L., King D. L., Weir G. C., Lauris V. Continuous, clonal, insulin- and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3519–3523. doi: 10.1073/pnas.77.6.3519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- German M. S. Glucose sensing in pancreatic islet beta cells: the key role of glucokinase and the glycolytic intermediates. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1781–1785. doi: 10.1073/pnas.90.5.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilligan A., Jewett L., Simon D., Damjanov I., Matschinsky F. M., Weik H., Pinkert C., Knowles B. B. Functional pancreatic beta-cell line from SV40 T-antigen transgenic mouse. Diabetes. 1989 Aug;38(8):1056–1062. doi: 10.2337/diab.38.8.1056. [DOI] [PubMed] [Google Scholar]
- Gotoh M., Maki T., Kiyoizumi T., Satomi S., Monaco A. P. An improved method for isolation of mouse pancreatic islets. Transplantation. 1985 Oct;40(4):437–438. doi: 10.1097/00007890-198510000-00018. [DOI] [PubMed] [Google Scholar]
- Hamaguchi K., Gaskins H. R., Leiter E. H. NIT-1, a pancreatic beta-cell line established from a transgenic NOD/Lt mouse. Diabetes. 1991 Jul;40(7):842–849. doi: 10.2337/diab.40.7.842. [DOI] [PubMed] [Google Scholar]
- Hamaguchi K., Leiter E. H. Comparison of cytokine effects on mouse pancreatic alpha-cell and beta-cell lines. Viability, secretory function, and MHC antigen expression. Diabetes. 1990 Apr;39(4):415–425. doi: 10.2337/diab.39.4.415. [DOI] [PubMed] [Google Scholar]
- Haspel H. C., Rosenfeld M. G., Rosen O. M. Characterization of antisera to a synthetic carboxyl-terminal peptide of the glucose transporter protein. J Biol Chem. 1988 Jan 5;263(1):398–403. [PubMed] [Google Scholar]
- Hughes S. D., Quaade C., Milburn J. L., Cassidy L., Newgard C. B. Expression of normal and novel glucokinase mRNAs in anterior pituitary and islet cells. J Biol Chem. 1991 Mar 5;266(7):4521–4530. [PubMed] [Google Scholar]
- Johnson J. H., Newgard C. B., Milburn J. L., Lodish H. F., Thorens B. The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J Biol Chem. 1990 Apr 25;265(12):6548–6551. [PubMed] [Google Scholar]
- Kandel J., Bossy-Wetzel E., Radvanyi F., Klagsbrun M., Folkman J., Hanahan D. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell. 1991 Sep 20;66(6):1095–1104. doi: 10.1016/0092-8674(91)90033-u. [DOI] [PubMed] [Google Scholar]
- Knowles B. B., Koncar M., Pfizenmaier K., Solter D., Aden D. P., Trinchieri G. Genetic control of the cytotoxic T cell response to SV40 tumor-associated specific antigen. J Immunol. 1979 May;122(5):1798–1806. [PubMed] [Google Scholar]
- Koranyi L. I., Bourey R. E., Slentz C. A., Holloszy J. O., Permutt M. A. Coordinate reduction of rat pancreatic islet glucokinase and proinsulin mRNA by exercise training. Diabetes. 1991 Mar;40(3):401–404. doi: 10.2337/diab.40.3.401. [DOI] [PubMed] [Google Scholar]
- Lacy P. E., Hegre O. D., Gerasimidi-Vazeou A., Gentile F. T., Dionne K. E. Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science. 1991 Dec 20;254(5039):1782–1784. doi: 10.1126/science.1763328. [DOI] [PubMed] [Google Scholar]
- Lu X. A., Werner D. The complete cDNA sequence of mouse elongation factor 1 alpha (EF 1 alpha) mRNA. Nucleic Acids Res. 1989 Jan 11;17(1):442–442. doi: 10.1093/nar/17.1.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matschinsky F. M. Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes. 1990 Jun;39(6):647–652. doi: 10.2337/diab.39.6.647. [DOI] [PubMed] [Google Scholar]
- Meglasson M. D., Burch P. T., Berner D. K., Najafi H., Vogin A. P., Matschinsky F. M. Chromatographic resolution and kinetic characterization of glucokinase from islets of Langerhans. Proc Natl Acad Sci U S A. 1983 Jan;80(1):85–89. doi: 10.1073/pnas.80.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meglasson M. D., Matschinsky F. M. New perspectives on pancreatic islet glucokinase. Am J Physiol. 1984 Jan;246(1 Pt 1):E1–13. doi: 10.1152/ajpendo.1984.246.1.E1. [DOI] [PubMed] [Google Scholar]
- Miyazaki J., Araki K., Yamato E., Ikegami H., Asano T., Shibasaki Y., Oka Y., Yamamura K. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology. 1990 Jul;127(1):126–132. doi: 10.1210/endo-127-1-126. [DOI] [PubMed] [Google Scholar]
- Pullen J. K., Horton R. M., Cai Z. L., Pease L. R. Structural diversity of the classical H-2 genes: K, D, and L. J Immunol. 1992 Feb 1;148(3):953–967. [PubMed] [Google Scholar]
- Reed B. C., Shade D., Alperovich F., Vang M. 3T3-L1 adipocyte glucose transporter (HepG2 class): sequence and regulation of protein and mRNA expression by insulin, differentiation, and glucose starvation. Arch Biochem Biophys. 1990 Jun;279(2):261–274. doi: 10.1016/0003-9861(90)90490-p. [DOI] [PubMed] [Google Scholar]
- Reetz A., Solimena M., Matteoli M., Folli F., Takei K., De Camilli P. GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J. 1991 May;10(5):1275–1284. doi: 10.1002/j.1460-2075.1991.tb08069.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rupp R. A., Weintraub H. Ubiquitous MyoD transcription at the midblastula transition precedes induction-dependent MyoD expression in presumptive mesoderm of X. laevis. Cell. 1991 Jun 14;65(6):927–937. doi: 10.1016/0092-8674(91)90545-a. [DOI] [PubMed] [Google Scholar]
- Santerre R. F., Cook R. A., Crisel R. M., Sharp J. D., Schmidt R. J., Williams D. C., Wilson C. P. Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4339–4343. doi: 10.1073/pnas.78.7.4339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigurdsson E., Baekkeskov S. The 64-kDa beta cell membrane autoantigen and other target molecules of humoral autoimmunity in insulin-dependent diabetes mellitus. Curr Top Microbiol Immunol. 1990;164:143–168. doi: 10.1007/978-3-642-75741-9_8. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Suzue K., Lodish H. F., Thorens B. Sequence of the mouse liver glucose transporter. Nucleic Acids Res. 1989 Dec 11;17(23):10099–10099. doi: 10.1093/nar/17.23.10099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tal M., Thorens B., Surana M., Fleischer N., Lodish H. F., Hanahan D., Efrat S. Glucose transporter isotypes switch in T-antigen-transformed pancreatic beta cells growing in culture and in mice. Mol Cell Biol. 1992 Jan;12(1):422–432. doi: 10.1128/mcb.12.1.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tal M., Wu Y. J., Leiser M., Surana M., Lodish H., Fleischer N., Weir G., Efrat S. [Val12] HRAS downregulates GLUT2 in beta cells of transgenic mice without affecting glucose homeostasis. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5744–5748. doi: 10.1073/pnas.89.13.5744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teitelman G., Alpert S., Hanahan D. Proliferation, senescence, and neoplastic progression of beta cells in hyperplasic pancreatic islets. Cell. 1988 Jan 15;52(1):97–105. doi: 10.1016/0092-8674(88)90534-x. [DOI] [PubMed] [Google Scholar]
- Thorens B., Weir G. C., Leahy J. L., Lodish H. F., Bonner-Weir S. Reduced expression of the liver/beta-cell glucose transporter isoform in glucose-insensitive pancreatic beta cells of diabetic rats. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6492–6496. doi: 10.1073/pnas.87.17.6492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trinchieri G., Aden D. P., Knowles B. B. Cell-mediated cytotoxicity to SV40-specific tumour-associated antigens. Nature. 1976 May 27;261(5558):312–314. doi: 10.1038/261312a0. [DOI] [PubMed] [Google Scholar]
- Vindeløv L. L., Christensen I. J., Nissen N. I. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry. 1983 Mar;3(5):323–327. doi: 10.1002/cyto.990030503. [DOI] [PubMed] [Google Scholar]