Abstract
A single, recessive mutation in a nuclear gene confers a temperature-sensitive growth response in a mutant of Saccharomyces cerevisiae, ts− 136. The mutant grows normally at 23 C, but exhibits a rapid and preferential inhibition of ribonucleic acid (RNA) accumulation after a shift to 36 C, demonstrating a defect in stable RNA production. Cultures of the mutant which were shifted from 23 to 36 C display the following phenomena which indicate that messenger RNA (mRNA), as well as stable RNA production, is defective. The entrance of pulse-labeled RNA into cytoplasmic polyribosomes is even more strongly inhibited than is net RNA accumulation. The rate of protein synthesis, at first unaffected, decreases slowly; this decrease is paralleled by the decay of polyribosomes to monoribosomes with a half-time of 23 min. The polyribosomes which remain after a 30-min preincubation of the mutant at 36 C are active in polypeptide synthesis in vivo, whereas the monoribosomes which accumulate are not. Furthermore, ribosomes isolated from a culture of the mutant preincubated for 1 hr at 36 C are inactive in polypeptide synthesis in vitro, but can be restored to full activity by the addition of polyuridylic acid as mRNA. We conclude that mutant ts− 136 is defective either in the synthesis of all types of cytoplasmic RNA, or in the transport of newly synthesized RNA from the nucleus to the cytoplasm, and that the mRNA of a eucaryotic organism (yeast) is metabolically unstable, having a half-life of approximately 23 min at 36 C.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- GIRARD M., PENMAN S., DARNELL J. E. THE EFFECT OF ACTINOMYCIN ON RIBOSOME FORMATION IN HELA CELLS. Proc Natl Acad Sci U S A. 1964 Feb;51:205–211. doi: 10.1073/pnas.51.2.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartwell L. H. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. doi: 10.1128/jb.93.5.1662-1670.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartwell L. H., McLaughlin C. S. A mutant of yeast apparently defective in the initiation of protein synthesis. Proc Natl Acad Sci U S A. 1969 Feb;62(2):468–474. doi: 10.1073/pnas.62.2.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartwell L. H., McLaughlin C. S. Temperature-sensitive mutants of yeast exhibiting a rapid inhibition of protein synthesis. J Bacteriol. 1968 Nov;96(5):1664–1671. doi: 10.1128/jb.96.5.1664-1671.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawthorne D C, Mortimer R K. Chromosome Mapping in Saccharomyces: Centromere-Linked Genes. Genetics. 1960 Aug;45(8):1085–1110. doi: 10.1093/genetics/45.8.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hutchison H. T., Hartwell L. H. Macromolecule synthesis in yeast spheroplasts. J Bacteriol. 1967 Nov;94(5):1697–1705. doi: 10.1128/jb.94.5.1697-1705.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEVINTHAL C., KEYNAN A., HIGA A. Messenger RNA turnover and protein synthesis in B. subtilis inhibited by actinomycin D. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1631–1638. doi: 10.1073/pnas.48.9.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mortimer R. K., Hawthorne D. C. Genetic mapping in Saccharomyces. Genetics. 1966 Jan;53(1):165–173. doi: 10.1093/genetics/53.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nierlich D. P. Radioisotope uptake as a measure of synthesis of messenger RNA. Science. 1967 Dec 1;158(3805):1186–1188. doi: 10.1126/science.158.3805.1186. [DOI] [PubMed] [Google Scholar]
- STUART D. C., Jr Fine structure of the nucleoid and internal membrane systems of Streptomyces. J Bacteriol. 1959 Aug;78:272–281. doi: 10.1128/jb.78.2.272-281.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmermann R. A., Levinthal C. Messenger RNA and RNA transcription time. J Mol Biol. 1967 Dec 14;30(2):349–370. [PubMed] [Google Scholar]