Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1967 Oct;105(1):121–125. doi: 10.1042/bj1050121

The purification and properties of N-acetylglucosamine 6-phosphate deacetylase from Escherichia coli

R J White 1, C A Pasternak 1
PMCID: PMC1198282  PMID: 4861885

Abstract

1. N-Acetylglucosamine 6-phosphate deacetylase and 2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating) (EC 5.3.1.10, glucosamine 6-phosphate deaminase) of Escherichia coli K12 have been separated by chromatography on DEAE-cellulose. 2. N-Acetylglucosamine 6-phosphate deacetylase has optimum pH8·5 and Km 0·8mm. Glucosamine 6-phosphate is a product of the reaction. There appear to be no essential cofactors. Glucosamine 6-phosphate and fructose 6-phosphate inhibit deacetylation. 3. Glucosamine 6-phosphate deaminase has optimum pH7·0 and Km 9·0mm. It is stimulated by N-acetylglucosamine 6-phosphate. 4. We propose that the deacetylase be termed 2-acetamido-2-deoxy-d-glucose 6-phosphate amidohydrolase (EC 3.5.1.–), with acetylglucosamine 6-phosphate deacetylase as a trivial name.

Full text

PDF
121

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BATES C. J., PASTERNAK C. A. FURTHER STUDIES ON THE REGULATION OF AMINO SUGAR METABOLISM IN BACILLUS SUBTILIS. Biochem J. 1965 Jul;96:147–154. doi: 10.1042/bj0960147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CLARKE J. S., PASTERNAK C. A. The regulation of amino sugar metabolism in Bacillus subtilis. Biochem J. 1962 Jul;84:185–191. doi: 10.1042/bj0840185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COMB D. G., ROSEMAN S. Glucosamine metabolism. IV. Glucosamine-6-phosphate deaminase. J Biol Chem. 1958 Jun;232(2):807–827. [PubMed] [Google Scholar]
  4. DISTLER J. J., MERRICK J. M., ROSEMAN S. Glucosamine metabolism. III. Preparation and N-acetylation of crystalline D-glucosamine- and D-galactosamine-6-phosphoric acids. J Biol Chem. 1958 Jan;230(1):497–509. [PubMed] [Google Scholar]
  5. LAMBERT R., SAITO Y., VEERKAMP J. H. INCORPORATION OF LABELED DERIVATIVES OF 2-DEOXY-2-AMINO-D-GLUCOSE INTO THE CELL WALLS OF LACTOBACILLUS BIFIDUS VAR. PENNSYLVANICUS. Arch Biochem Biophys. 1965 May;110:341–345. doi: 10.1016/0003-9861(65)90130-x. [DOI] [PubMed] [Google Scholar]
  6. LEVVY G. A., MCALLAN A. The N-acetylation and estimation of hexosamines. Biochem J. 1959 Sep;73:127–132. doi: 10.1042/bj0730127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lambert R., Zilliken F. Novel growth factors for Lactobacillus bifidus var pennsylvanicus. Arch Biochem Biophys. 1965 Jun;110(3):544–550. doi: 10.1016/0003-9861(65)90448-0. [DOI] [PubMed] [Google Scholar]
  8. Matushita Y., Takagi Y. Deacetylation of N-acetylglucosamine 6-phosphate by the bovine parotid gland extract. Biochim Biophys Acta. 1966 Jul 27;124(1):204–207. doi: 10.1016/0304-4165(66)90334-5. [DOI] [PubMed] [Google Scholar]
  9. ROSEMAN S. Metabolism of connective tissue. Annu Rev Biochem. 1959;28:545–578. doi: 10.1146/annurev.bi.28.070159.002553. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES