Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Jun 15;228(3):751–755. doi: 10.1042/bj2280751

Evidence that noradrenaline increases pyruvate dehydrogenase activity and decreases acetyl-CoA carboxylase activity in rat interscapular brown adipose tissue in vivo.

J M Gibbins, R M Denton, J G McCormack
PMCID: PMC1145047  PMID: 2862861

Abstract

The rate of fatty acid synthesis in interscapular brown adipose tissue of female cold-adapted rats, as measured by the incorporation of 3H from 3H2O into tissue lipid, was decreased by about 70% after injection of noradrenaline. There was a similar decrease in the activity of acetyl-CoA carboxylase. In contrast, the proportion of pyruvate dehydrogenase in its active non-phosphorylated form was greatly increased after injection of noradrenaline. This finding suggests that the oxidation of glucose may be important in noradrenaline-induced thermogenesis in rat brown adipose tissue.

Full text

PDF
751

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agius L., Williamson D. H. Lipogenesis in interscapular brown adipose tissue of virgin, pregnant and lactating rats. The effects of intragastric feeding. Biochem J. 1980 Aug 15;190(2):477–480. doi: 10.1042/bj1900477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agius L., Williamson D. H. The utilization of ketone bodies by the interscapular brown adipose tissue of the rat. Biochim Biophys Acta. 1981 Oct 23;666(1):127–132. doi: 10.1016/0005-2760(81)90098-9. [DOI] [PubMed] [Google Scholar]
  3. Assimacopoulos-Jeannet F., McCormack J. G., Jeanrenaud B. Effect of phenylephrine on pyruvate dehydrogenase activity in rat hepatocytes and its interaction with insulin and glucagon. FEBS Lett. 1983 Aug 8;159(1-2):83–88. doi: 10.1016/0014-5793(83)80421-9. [DOI] [PubMed] [Google Scholar]
  4. Brownsey R. W., Denton R. M. Evidence that insulin activates fat-cell acetyl-CoA carboxylase by increased phosphorylation at a specific site. Biochem J. 1982 Jan 15;202(1):77–86. doi: 10.1042/bj2020077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brownsey R. W., Hughes W. A., Denton R. M. Adrenaline and the regulation of acetyl-coenzyme A carboxylase in rat epididymal adipose tissue. Inactivation of the enzyme is associated with phosphorylation and can be reversed on dephosphorylation. Biochem J. 1979 Oct 15;184(1):23–32. doi: 10.1042/bj1840023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooney G. J., Newsholme E. A. The maximum capacity of glycolysis in brown adipose tissue and its relationship to control of the blood glucose concentration. FEBS Lett. 1982 Nov 8;148(2):198–200. doi: 10.1016/0014-5793(82)80807-7. [DOI] [PubMed] [Google Scholar]
  7. Coore H. G., Denton R. M., Martin B. R., Randle P. J. Regulation of adipose tissue pyruvate dehydrogenase by insulin and other hormones. Biochem J. 1971 Nov;125(1):115–127. doi: 10.1042/bj1250115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Denton R. M., Halperin M. L. The control of fatty acid and triglyceride synthesis in rat epididymal adipose tissue. Roles of coenzyme A derivatives, citrate and L-glycerol 3-phosphate. Biochem J. 1968 Nov;110(1):27–38. doi: 10.1042/bj1100027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Denton R. M., McCormack J. G. On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett. 1980 Sep 22;119(1):1–8. doi: 10.1016/0014-5793(80)80986-0. [DOI] [PubMed] [Google Scholar]
  10. Doi K., Kuroshima A. Modified metabolic responsiveness to glucagon in cold-acclimated and heat-acclimated rats. Life Sci. 1982 Mar 1;30(9):785–791. doi: 10.1016/0024-3205(82)90614-2. [DOI] [PubMed] [Google Scholar]
  11. Flaim K. E., Horwitz B. A., Horowitz J. M. Coupling of signals to brown fat: alpha- and beta-adrenergic responses in intact rats. Am J Physiol. 1977 Mar;232(3):R101–R109. doi: 10.1152/ajpregu.1977.232.3.R101. [DOI] [PubMed] [Google Scholar]
  12. Halestrap A. P., Denton R. M. Hormonal regulation of adipose-tissue acetyl-Coenzyme A carboxylase by changes in the polymeric state of the enzyme. The role of long-chain fatty acyl-Coenzyme A thioesters and citrate. Biochem J. 1974 Aug;142(2):365–377. doi: 10.1042/bj1420365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hiraoka T., DeBuysere M., Olson M. S. Studies of the effects of beta-adrenergic agonists on the regulation of pyruvate dehydrogenase in the perfused rat heart. J Biol Chem. 1980 Aug 25;255(16):7604–7609. [PubMed] [Google Scholar]
  14. Holland R., Hardie D. G., Clegg R. A., Zammit V. A. Evidence that glucagon-mediated inhibition of acetyl-CoA carboxylase in isolated adipocytes involves increased phosphorylation of the enzyme by cyclic AMP-dependent protein kinase. Biochem J. 1985 Feb 15;226(1):139–145. doi: 10.1042/bj2260139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee K. H., Kim K. H. Effect of epinephrine on acetyl-CoA carboxylase in rat epididymal fat tissue. J Biol Chem. 1978 Nov 25;253(22):8157–8161. [PubMed] [Google Scholar]
  16. Ma S. W., Foster D. O. Redox state of brown adipose tissue as a possible determinant of its blood flow. Can J Physiol Pharmacol. 1984 Aug;62(8):949–956. doi: 10.1139/y84-159. [DOI] [PubMed] [Google Scholar]
  17. Martin B. R., Denton R. M., Pask H. T., Randle P. J. Mechanisms regulating adipose-tissue pyruvate dehydrogenase. Biochem J. 1972 Sep;129(3):763–773. doi: 10.1042/bj1290763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McCormack J. G., Denton R. M. Evidence that fatty acid synthesis in the interscapular brown adipose tissue of cold-adapted rats is increased in vivo by insulin by mechanisms involving parallel activation of pyruvate dehydrogenase and acetyl-coenzyme A carboxylase. Biochem J. 1977 Sep 15;166(3):627–630. doi: 10.1042/bj1660627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McCormack J. G., Denton R. M. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+. Biochem J. 1984 Feb 15;218(1):235–247. doi: 10.1042/bj2180235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McCormack J. G., Denton R. M. Role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca2+-sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat. Biochem J. 1980 Jul 15;190(1):95–105. doi: 10.1042/bj1900095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McCormack J. G., Denton R. M. The activation of pyruvate dehydrogenase in the perfused rat heart by adrenaline and other inotropic agents. Biochem J. 1981 Feb 15;194(2):639–643. doi: 10.1042/bj1940639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McCormack J. G. Evidence that adrenaline activates key oxidative enzymes in rat liver by increasing intramitochondrial [Ca2+]. FEBS Lett. 1985 Jan 28;180(2):259–264. doi: 10.1016/0014-5793(85)81082-6. [DOI] [PubMed] [Google Scholar]
  23. McCormack J. G. The regulation of fatty acid synthesis in brown adipose tissue by insulin. Prog Lipid Res. 1982;21(3):195–223. doi: 10.1016/0163-7827(82)90009-1. [DOI] [PubMed] [Google Scholar]
  24. Nicholls D. G. Brown adipose tissue mitochondria. Biochim Biophys Acta. 1979 Jul 3;549(1):1–29. doi: 10.1016/0304-4173(79)90016-8. [DOI] [PubMed] [Google Scholar]
  25. Nicholls D. G., Locke R. M. Thermogenic mechanisms in brown fat. Physiol Rev. 1984 Jan;64(1):1–64. doi: 10.1152/physrev.1984.64.1.1. [DOI] [PubMed] [Google Scholar]
  26. Oviasu O. A., Whitton P. D. Hormonal control of pyruvate dehydrogenase activity in rat liver. Biochem J. 1984 Nov 15;224(1):181–186. doi: 10.1042/bj2240181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saggerson E. D., Greenbaum A. L. The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue. Biochem J. 1970 Sep;119(2):193–219. doi: 10.1042/bj1190193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Seydoux J., Trimble E. R., Bouillaud F., Assimacopoulos-Jeannet F., Bas S., Ricquier D., Giacobino J. P., Girardier L. Modulation of beta-oxidation and proton conductance pathway of brown adipose tissue in hypo- and hyperinsulinemic states. FEBS Lett. 1984 Jan 23;166(1):141–145. doi: 10.1016/0014-5793(84)80060-5. [DOI] [PubMed] [Google Scholar]
  29. Shimazu T., Takahashi A. Stimulation of hypothalamic nuclei has differential effects on lipid synthesis in brown and white adipose tissue. Nature. 1980 Mar 6;284(5751):62–63. doi: 10.1038/284062a0. [DOI] [PubMed] [Google Scholar]
  30. Stansbie D., Brownsey R. W., Crettaz M., Denton R. M. Acute effects in vivo of anti-insulin serum on rates of fatty acid synthesis and activities of acetyl-coenzyme A carboxylase and pyruvate dehydrogenase in liver and epididymal adipose tissue of fed rats. Biochem J. 1976 Nov 15;160(2):413–416. doi: 10.1042/bj1600413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Trayhurn P. Fatty acid synthesis in vivo in brown adipose tissue, liver and white adipose tissue of the cold-acclimated rat. FEBS Lett. 1979 Aug 1;104(1):13–16. doi: 10.1016/0014-5793(79)81075-3. [DOI] [PubMed] [Google Scholar]
  32. Witters L. A., Tipper J. P., Bacon G. W. Stimulation of site-specific phosphorylation of acetyl coenzyme A carboxylase by insulin and epinephrine. J Biol Chem. 1983 May 10;258(9):5643–5648. [PubMed] [Google Scholar]
  33. Young P., Cawthorne M. A., Levy A. L., Wilson K. Reduced maximum capacity of glycolysis in brown adipose tissue of genetically obese, diabetic (db/db) mice and its restoration following treatment with a thermogenic beta-adrenoceptor agonist. FEBS Lett. 1984 Oct 15;176(1):16–20. doi: 10.1016/0014-5793(84)80903-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES