Abstract
To extend the potential of antibodies and their derivatives to provide passive protection against enteric infections when supplied orally in crude plant extracts, we have expressed both a small immune protein (SIP) and a full‐length antibody in plants using two different plant virus vectors based on potato virus X (PVX) and cowpea mosaic virus (CPMV). The agr;SIP molecule consisted of a single chain antibody (scFv) specific for the porcine coronavirus, transmissible gastroenteritis virus (TGEV) linked to the α‐CH3 domain from human IgA. To express the full‐length IgA, the individual light and heavy chains from the TGEV‐specific mAb 6A.C3 were inserted into separate PVX constructs and plants were co‐infected with both constructs. Western blot analysis revealed the efficient expression of both the SIP and IgA molecules. Analysis of crude plant extracts revealed that both the plant‐expressed αSIP and IgA molecules could bind to and neutralize TGEV in tissue culture, indicating that active molecules were produced. Oral administration of crude extracts from antibody‐expressing plant tissue to 2‐day‐old piglets showed that both the αSIP and full‐length IgA molecules can provide in vivo protection against TGEV.
Keywords: IgA, Passive immunization, Plant virus vectors, Small immune protein, Transmissible gastroenteritis virus
REFERENCES
- 1. Enjuanes, L., van der Zeijst, B. A. M., Molecular basis of TGE coronavirus epidemiology. In: Siddell, S. G. (Ed.), The Coronaviridae, Plenum Press, New York 1995, pp. 337‐376.
- 2. Gebauer, F. , Posthumus, W. A. P. , Correa, I. , Suñé, C. et al., Residues involved in the formation of the antigenic sites of the S protein of transmissible gastroenteritis coronavirus. Virology 1991. 183, 225–238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Castilla, J. , Sola, I. , Enjuanes, L. , Interference of coronavirus infection by expression of immunoglobulin G (IgG) or IgA virus‐neutralizing antibodies. J. Virol. 1997. 71, 5251–5258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Sola, I. , Castilla, J. , Pintado, B. , Sánchez‐Morgado, J. M. et al., Transgenic mice secreting coronavirus neutralizing antibodies into the milk. J. Virol. 1998. 72, 3762–3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Li, E. , Pedraza, A. , Bestagno, M. , Mancardi, S. et al., Mammalian cell expression of dimeric small immune proteins (SIP). Protein Eng. 1997. 10, 731–736. [DOI] [PubMed] [Google Scholar]
- 6. Stoger, E. , Sack, M. , Fischer, R. , Christou, P. , Plantibodies: application, advantages and bottlenecks. Curr. Opin. Biotechnol. 2002. 13, 161–166. [DOI] [PubMed] [Google Scholar]
- 7. Fischer, R. , Stoger, E. , Schillberg, S. , Christou, P. , Twyman, R. M. , Plant‐based production of biopharmaceuticals. Curr. Opin. Plant Biol. 2004. 7, 152–158. [DOI] [PubMed] [Google Scholar]
- 8. Monger, W. , Alamillo, J. M. , Sola, I. , Perrin, Y. et al., An antibody derivative expressed from viral vectors passively immunizes pigs against transmissible gastroenteritis virus when supplied orally in crude plant extracts. Plant Biotechnol. J. 2006, DOI: 10.1111/j.1467‐7652.2006.00206.x 10.1111/j.1467-7652.2006.00206.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Jones, L. , Hamilton, A. J. , Voinnet, O. , Thomas, C. L. et al., RNADNA interactions and DNA methylation in post‐transcriptional gene silencing. Plant Cell 1999. 11, 2291–2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Liu, L. , Cañizares, M. C. , Monger, W. , Perrin, Y. et al., Cowpea mosaic virus‐based systems for the production of antigens and antibodies in plants. Vaccine 2005. 23, 1788–1792. [DOI] [PubMed] [Google Scholar]
- 11. Liu, L. , Lomonossoff, G. P. , Agroinfection as a rapid method for propagating cowpea mosaic virus‐based constructs. J. Virol. Methods 2002. 105, 343–348. [DOI] [PubMed] [Google Scholar]
- 12. Mechtcheriakova, I. A. , Eldarov, M. A. , Nicholson, L. , Shanks, M. et al., The use of viral vectors to produce hepatitis B virus core particles in plants. J. Virol. Methods 2006. 131, 10–15. [DOI] [PubMed] [Google Scholar]
- 13. Correa, I. , Jiménez, G. , Suñé, C. , Bullido, M. J. , Enjuanes, L. , Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Res. 1988. 10, 77–93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Sánchez, C. M. , Izeta, A. , Sánchez‐Morgado, J. M. , Alonso, S. et al., Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J. Virol. 1999. 73, 7607–7618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Jiménez, G. , Correa, I. , Melgosa, M. P. , Bullido, M. J. , Enjuanes, L. , Critical epitopes in transmissible gastroenteritis virus neutralization. J. Virol. 1986. 60, 131–139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Verch, T. , Yusibov, V. , Koprowski, H. , Expression and assembly of a full‐length monoclonal antibody in plants using a plant virus vector. J. Immunol. Methods 1998. 230, 69–75. [DOI] [PubMed] [Google Scholar]
- 17. Borsi, L. , Balza, E. , Bestagno, M. , Castellani, P. et al., Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED‐B domain of fibronectin. Int. J. Cancer 2002. 102, 75–85. [DOI] [PubMed] [Google Scholar]