Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 May 25;243(1):150–157. doi: 10.1006/viro.1998.9045

Feline Infectious Peritonitis Viruses Arise by Mutation from Endemic Feline Enteric Coronaviruses

Harry Vennema a,1,2, Amy Poland a, Janet Foley a, Niels C Pedersen a,b
PMCID: PMC7131759  PMID: 9527924

Abstract

Feline infectious peritonitis virus (FIPV) strains from six cats and three different geographic areas were compared genetically with feline enteric coronavirus (FECV) isolates obtained from cats inhabiting the same environments. Sequence comparisons were made from 1.2- to 8.9-kb segments on the 3′ end of the genome. FECV/FIPV pairs from the same catteries or shelters were 97.3–99.5% related but were genetically distinct from FIPV and FECV strains obtained from cats living in geographically distinct environments. The high genetic similarity between FECVs and FIPVs from the same environment strongly suggested a common ancestry. Based on the presence of deletion mutations in the FIPVs and not in the FECVs, it was concluded that FIPVs evolved as mutants of FECVs. The mutations are deletions in the FIPVs and not insertions in the FECVs since similar sequences are present in other strains that have segregated earlier from a common ancestor. Therefore, the order of descent is from FECV to FIPV. Mutations unique to FIPVs were found in open reading frames (ORFs) 3c in 4 of 6 isolates and/or 7b in 3 of 6 isolates. When the study was extended to include 7 additional FIPV isolates, 11/13 of the FIPVs sequenced were found to have mutated 3c ORFs.

References

REFERENCES

  • 1.Black J.W. Recovery and in vitro cultivation of a coronavirus from laboratory-induced cases of feline infectious peritonitis (FIP) Vet. Med. Small Anim. Clin. 1980;75:811–814. [PubMed] [Google Scholar]
  • 2.Chomczynski P., Sacchi N. Single step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  • 3.Compton S.R., Barthold S.W., Smith A.L. The cellular and molecular pathogenesis of coronaviruses. Lab. Anim. Sci. 1993;43:15–28. [PubMed] [Google Scholar]
  • 4.de Groot R.J., Andeweg A.C., Horzinek M.C., Spaan W.J.M. Sequence analysis of the 3′ end of the feline coronavirus FIPV 79-1146 genome: Comparison with the genome of porcine coronavirus TGEV reveals large insertions. Virology. 1988;167:370–376. doi: 10.1016/0042-6822(88)90097-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984;12:387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Foley J.E., Pedersen N.C. The inheritance of susceptibility to feline infectious peritonitis in purebred catteries. Feline Pract. 1995;24:14–22. [Google Scholar]
  • 7.Foley J.E., Poland A., Carlson J., Pedersen N.C. Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus. J. Am. Vet. Med. Assoc. 1997;210:1313–1318. [PubMed] [Google Scholar]
  • 8.Herrewegh A.A., Vennema H., Horzinek M.C., Rottier P.J., de G.R.J. The molecular genetics of feline coronaviruses: Comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virology. 1995;212:622–631. doi: 10.1006/viro.1995.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Hickman M.A., Morris J.G., Rogers Q.R., Pedersen N.C. Elimination of feline coronavirus infection from a large experimental specific pathogen-free cat breeding colony by serologic testing and isolation. Feline Pract. 1995;23:96–102. [Google Scholar]
  • 10.Holzworth J. Some important disorders of cats. Cornell Vet. 1963;53:157–160. [PubMed] [Google Scholar]
  • 11.Horsburgh B.C., Brierley I., Brown T.D. Analysis of a 9.6 kb sequence from the 3′ end of canine coronavirus genomic RNA. J. Gen. Virol. 1992;66:6931–6938. doi: 10.1099/0022-1317-73-11-2849. [DOI] [PubMed] [Google Scholar]
  • 12.Jacobs L., Van-der-Zeijst B.A.M., Horzinek M.C. Characterization and translation of transmissible gastroenteritis virus mRNAs. J. Virol. 1986;57:1010–1015. doi: 10.1128/jvi.57.3.1010-1015.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Keck J.G., Matsushima G.K., Makino S., Fleming J.O., Vannier D.M., Stohlman S.A., Lai M.M. In vivo RNA-RNA recombination of coronavirus in mouse brain. J. Virol. 1988;62:1810–1813. doi: 10.1128/jvi.62.5.1810-1813.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Keck J.G., Soe L.H., Makino S., Stohlman S.A., Lai M.M. RNA recombination of murine coronaviruses: Recombination between fusion-positive mouse hepatitis virus A59 and fusion-negative mouse hepatitis virus 2. J. Virol. 1988;62:1989–1998. doi: 10.1128/jvi.62.6.1989-1998.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kusters J.G., Jager E.J., Niesters H.G., van der Zeijst B.A. Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine. 1990;8:605–608. doi: 10.1016/0264-410X(90)90018-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Laude H., van Reeth K., Pensaert M. Porcine respiratory coronavirus: Molecular features and virus-host interactions. Vet. Res. 1993;24:125–150. [PubMed] [Google Scholar]
  • 17.Motokawa K., Hohdatsu T., Hashimoto H., Koyama H. Comparison of the amino acid sequence and phylogenetic analysis of the peplomer, integral membrane and nucleocapsid proteins of feline, canine and porcine coronaviruses. Microbiol. Immunol. 1996;40:425–433. doi: 10.1111/j.1348-0421.1996.tb01089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Pedersen N.C. Serologic studies of naturally occurring feline infectious peritonitis. Am. J. Vet. Res. 1976;37:1449–1453. [PubMed] [Google Scholar]
  • 19.Pedersen N.C. An overview of feline enteric coronavirus and infectious peritonitis virus infections. Feline Pract. 1995;23:7–20. [Google Scholar]
  • 20.Pedersen N.C., Black J.W., Boyle J.F., Evermann J.F., McKeirnan A.J., Ott R.L. Pathogenic differences between various feline coronavirus isolates. Adv. Exp. Med. Biol. 1984;173:37–52. doi: 10.1007/978-1-4615-9373-7_36. [DOI] [PubMed] [Google Scholar]
  • 21.Pedersen N.C., Boyle J.F., Floyd K. Infection studies in kittens, using feline infectious peritonitis virus propagated in cell culture. Am. J. Vet. Res. 1981;42:363–367. [PubMed] [Google Scholar]
  • 22.Pedersen N.C., Boyle J.F., Floyd K., Fudge A., Barker J. An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. Am. J. Vet. Res. 1981;42:368–377. [PubMed] [Google Scholar]
  • 23.Pedersen N.C., Floyd K. Experimental studies with three new strains of feline infectious peritonitis virus: FIPV-UCD2, FIPV-UCD3, and FIPV-UCD4. Compend. Contin. Educ. Pract. Vet. 1985;7:1001–1011. [Google Scholar]
  • 24.Poland A.M., Vennema H., Foley J.E., Pedersen N.C. Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. J. Clin. Microbiol. 1996;34:3180–3184. doi: 10.1128/jcm.34.12.3180-3184.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Postorino-Reeves N. Vaccination against naturally occurring FIP in a single large cat shelter. Feline Pract. 1995;23:81–82. [Google Scholar]
  • 26.Program Manual for the Wisconsin Package Version 8, 1994, Genetics Computer Group, 575 Science Drive, Madison, WI
  • 27.Rasschaert D., Duarte M., Laude H. Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. J. Gen. Virol. 1990;71:2599–2607. doi: 10.1099/0022-1317-71-11-2599. [DOI] [PubMed] [Google Scholar]
  • 28.Vaughn E.M., Halbur P.G., Paul P.S. Three new isolates of porcine respiratory coronavirus with various pathogenicities and spike (S) gene deletions. J. Clin. Microbiol. 1994;32:1809–1812. doi: 10.1128/jcm.32.7.1809-1812.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Vennema H., Groot R.J.de, Harbour D.A., Horzinek M.C., Spaan W.J. Primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonitis virus and immunogenicity of recombinant vaccinia viruses in kittens. Virology. 1991;181:327–335. doi: 10.1016/0042-6822(91)90499-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Vennema H., Heijnen L., Rottier P.J., Horzinek M.C., Spaan W.J. A novel glycoprotein of feline infectious peritonitis coronavirus contains a KDEL-like endoplasmic reticulum retention signal. J. Virol. 1992;66:4951–4956. doi: 10.1128/jvi.66.8.4951-4956.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Vennema H., Poland A., Floyd Hawkins K., Pedersen N.C. A comparison of the genomes of FECVs and FIPVs and what they tell us about the relationships between feline coronaviruses and their evolution. Feline Pract. 1995;23:40–44. [Google Scholar]
  • 32.Vennema H., Rossen J.W., Wesseling J., Horzinek M.C., Rottier P.J. Genomic organization and expression of the 3′ end of the canine and feline enteric coronaviruses. Virology. 1992;191:134–140. doi: 10.1016/0042-6822(92)90174-N. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Ward J.M. Morphogenesis of a virus in cats with experimental feline infectious peritonitis. Virology. 1970;41:191–194. doi: 10.1016/0042-6822(70)90070-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Wesley R.D., Woods R.D., Cheung A.K. Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus. J. Virol. 1991;65:3369–3373. doi: 10.1128/jvi.65.6.3369-3373.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES