Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Aug;70(8):2276–2280. doi: 10.1073/pnas.70.8.2276

Aminoglycoside Antibiotic-Inactivating Enzymes in Actinomycetes Similar to Those Present in Clinical Isolates of Antibiotic-Resistant Bacteria

Raoul Benveniste 1,*, Julian Davies 1,
PMCID: PMC433717  PMID: 4209515

Abstract

Various species of Streptomyces possess aminoglycoside-modifying enzymes. Streptomyces kanamyceticus contains an enzyme that acetylates the 6′-amino group of kanamycin A and B, gentamicin C1a, and neomycin. Streptomyces spectabilis produces an enzyme that acetylates the 2′-amino group of the hexose ring of gentamicin C1a. These enzymes catalyze reactions identical to those catalyzed by enzymes found in gram-negative bacteria containing R(antibiotic resistance)-factors. The discovery of these enzymes suggests the possibility of an evolutionary relationship between the aminoglycosideinactivating enzymes (produced by resistance determinants) in bacteria containing R-factors and similar enzymes found in the actinomycetes.

Keywords: streptomyces, origin of R-factors, gentamicin-acetate

Full text

PDF
2276

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argoudelis A. D., Coats J. H. Microbial transformation of antibiotics. II. Phosphorylation of lincomycin by Streptomyces species. J Antibiot (Tokyo) 1969 Jul;22(7):341–343. doi: 10.7164/antibiotics.22.341. [DOI] [PubMed] [Google Scholar]
  2. Argoudelis A. D., Coats J. H. Microbial transformation of antibiotics. V. Clindamycin ribonucleotides. J Am Chem Soc. 1971 Jan 27;93(2):534–535. doi: 10.1021/ja00731a047. [DOI] [PubMed] [Google Scholar]
  3. Argoudelis A. D., Coats J. H. Microbial transformation of antibiotics. VI. Acylation of chloramphenicol by Streptomyces coelicolor. J Antibiot (Tokyo) 1971 Mar;24(3):206–208. doi: 10.7164/antibiotics.24.206. [DOI] [PubMed] [Google Scholar]
  4. Benveniste R., Davies J. Enzymatic acetylation of aminoglycoside antibiotics by Escherichia coli carrying an R factor. Biochemistry. 1971 May 11;10(10):1787–1796. doi: 10.1021/bi00786a009. [DOI] [PubMed] [Google Scholar]
  5. Brzezinska M., Benveniste R., Davies J., Daniels P. J., Weinstein J. Gentamicin resistance in strains of Pseudomonas aeruginosa mediated by enzymatic N-acetylation of the deoxystreptamine moiety. Biochemistry. 1972 Feb 29;11(5):761–765. doi: 10.1021/bi00755a013. [DOI] [PubMed] [Google Scholar]
  6. Cohen S. N., Chang A. C., Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2110–2114. doi: 10.1073/pnas.69.8.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies J. E., Rownd R. Transmissible multiple drug resistance in Enterobacteriaceae. Science. 1972 May 19;176(4036):758–768. doi: 10.1126/science.176.4036.758. [DOI] [PubMed] [Google Scholar]
  8. Gardner P., Smith D. H., Beer H., Moellering R. C., Jr Recovery of resistance (R) factors from a drug-free community. Lancet. 1969 Oct 11;2(7624):774–776. doi: 10.1016/s0140-6736(69)90482-6. [DOI] [PubMed] [Google Scholar]
  9. Hill P. The production of penicillins in soils and seeds by penicillium chrysogenum and the role of penicillin -lactamase in the ecology of soil bacillus. J Gen Microbiol. 1972 Apr;70(2):243–252. doi: 10.1099/00221287-70-2-243. [DOI] [PubMed] [Google Scholar]
  10. Loening U. E. Molecular weights of ribosomal RNA in relation to evolution. J Mol Biol. 1968 Dec;38(3):355–365. doi: 10.1016/0022-2836(68)90391-4. [DOI] [PubMed] [Google Scholar]
  11. Miller A. L., Walker J. B. Enzymatic phosphorylation of streptomycin by extracts of streptomycin-producing strains of Streptomyces. J Bacteriol. 1969 Aug;99(2):401–405. doi: 10.1128/jb.99.2.401-405.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ozanne B., Benveniste R., Tipper D., Davies J. Aminoglycoside antibiotics: inactivation by phosphorylation in Escherichia coli carrying R factors. J Bacteriol. 1969 Nov;100(2):1144–1146. doi: 10.1128/jb.100.2.1144-1146.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Smith D. H., Van Otto B., Smith A. L. A rapid chemical assay for gentamicin. N Engl J Med. 1972 Mar 16;286(11):583–586. doi: 10.1056/NEJM197203162861106. [DOI] [PubMed] [Google Scholar]
  14. Walker J. B., Skorvaga M. Phosphorylation of streptomycin and dihydrostreptomycin by Streptomyces. Enzymatic synthesis of different diphosphorylated derivatives. J Biol Chem. 1973 Apr 10;248(7):2435–2440. [PubMed] [Google Scholar]
  15. Walker M. S., Walker J. B. Streptomycin biosynthesis and metabolism. Enzymatic phosphorylation of dihydrostreptobiosamine moieties of dihydro-streptomycin-(streptidino) phosphate and dihydrostreptomycin by Streptomyces extracts. J Biol Chem. 1970 Dec 25;245(24):6683–6689. [PubMed] [Google Scholar]
  16. Watanabe T. The problems of drug-resistant pathogenic bacteria. The origin of R factors. Ann N Y Acad Sci. 1971 Jun 11;182:126–140. doi: 10.1111/j.1749-6632.1971.tb30652.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES