Skip to main content
Journal of Biomolecular Techniques : JBT logoLink to Journal of Biomolecular Techniques : JBT
. 2002 Sep;13(3):119–130.

Identification of protein phosphorylation sites by a combination of mass spectrometry and solid phase Edman sequencing

D Campbell, N Morrice
PMCID: PMC2279855  PMID: 19498976

Full Text

The Full Text of this article is available as a PDF (156.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., Kozlowski M. T., Weng Q. P., Morrice N., Avruch J. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol. 1998 Jan 15;8(2):69–81. doi: 10.1016/s0960-9822(98)70037-5. [DOI] [PubMed] [Google Scholar]
  2. Annan R. S., Carr S. A. Phosphopeptide analysis by matrix-assisted laser desorption time-of-flight mass spectrometry. Anal Chem. 1996 Oct 1;68(19):3413–3421. doi: 10.1021/ac960221g. [DOI] [PubMed] [Google Scholar]
  3. Bennett Keiryn L., Stensballe Allan, Podtelejnikov Alexandre V., Moniatte Marc, Jensen Ole Nørregaard. Phosphopeptide detection and sequencing by matrix-assisted laser desorption/ionization quadrupole time-of-flight tandem mass spectrometry. J Mass Spectrom. 2002 Feb;37(2):179–190. doi: 10.1002/jms.271. [DOI] [PubMed] [Google Scholar]
  4. Casamayor A., Morrice N. A., Alessi D. R. Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinositide-dependent protein kinase-1: identification of five sites of phosphorylation in vivo. Biochem J. 1999 Sep 1;342(Pt 2):287–292. [PMC free article] [PubMed] [Google Scholar]
  5. Cohen Philip. The origins of protein phosphorylation. Nat Cell Biol. 2002 May;4(5):E127–E130. doi: 10.1038/ncb0502-e127. [DOI] [PubMed] [Google Scholar]
  6. Coull J. M., Pappin D. J., Mark J., Aebersold R., Köster H. Functionalized membrane supports for covalent protein microsequence analysis. Anal Biochem. 1991 Apr;194(1):110–120. doi: 10.1016/0003-2697(91)90157-o. [DOI] [PubMed] [Google Scholar]
  7. Ficarro Scott B., McCleland Mark L., Stukenberg P. Todd, Burke Daniel J., Ross Mark M., Shabanowitz Jeffrey, Hunt Donald F., White Forest M. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol. 2002 Mar;20(3):301–305. doi: 10.1038/nbt0302-301. [DOI] [PubMed] [Google Scholar]
  8. Goshe Michael B., Veenstra Timothy D., Panisko Ellen A., Conrads Thomas P., Angell Nicolas H., Smith Richard D. Phosphoprotein isotope-coded affinity tags: application to the enrichment and identification of low-abundance phosphoproteins. Anal Chem. 2002 Feb 1;74(3):607–616. doi: 10.1021/ac015528g. [DOI] [PubMed] [Google Scholar]
  9. Kemp B. E., Pearson R. B. Protein kinase recognition sequence motifs. Trends Biochem Sci. 1990 Sep;15(9):342–346. doi: 10.1016/0968-0004(90)90073-k. [DOI] [PubMed] [Google Scholar]
  10. Knebel A., Morrice N., Cohen P. A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38delta. EMBO J. 2001 Aug 15;20(16):4360–4369. doi: 10.1093/emboj/20.16.4360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Küster B., Mortensen P., Andersen J. S., Mann M. Mass spectrometry allows direct identification of proteins in large genomes. Proteomics. 2001 May;1(5):641–650. doi: 10.1002/1615-9861(200104)1:5<641::AID-PROT641>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  12. Loughrey Chen Susan, Huddleston Michael J., Shou Wenying, Deshaies Raymond J., Annan Roland S., Carr Steven A. Mass spectrometry-based methods for phosphorylation site mapping of hyperphosphorylated proteins applied to Net1, a regulator of exit from mitosis in yeast. Mol Cell Proteomics. 2002 Mar;1(3):186–196. doi: 10.1074/mcp.m100032-mcp200. [DOI] [PubMed] [Google Scholar]
  13. McLachlin D. T., Chait B. T. Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr Opin Chem Biol. 2001 Oct;5(5):591–602. doi: 10.1016/s1367-5931(00)00250-7. [DOI] [PubMed] [Google Scholar]
  14. Meyer H. E., Hoffmann-Posorske E., Heilmeyer L. M., Jr Determination and location of phosphoserine in proteins and peptides by conversion to S-ethylcysteine. Methods Enzymol. 1991;201:169–185. doi: 10.1016/0076-6879(91)01016-u. [DOI] [PubMed] [Google Scholar]
  15. Neubauer G., Mann M. Mapping of phosphorylation sites of gel-isolated proteins by nanoelectrospray tandem mass spectrometry: potentials and limitations. Anal Chem. 1999 Jan 1;71(1):235–242. doi: 10.1021/ac9804902. [DOI] [PubMed] [Google Scholar]
  16. Oda Y., Nagasu T., Chait B. T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol. 2001 Apr;19(4):379–382. doi: 10.1038/86783. [DOI] [PubMed] [Google Scholar]
  17. Sapkota G. P., Kieloch A., Lizcano J. M., Lain S., Arthur J. S., Williams M. R., Morrice N., Deak M., Alessi D. R. Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem. 2001 Jan 31;276(22):19469–19482. doi: 10.1074/jbc.M009953200. [DOI] [PubMed] [Google Scholar]
  18. Sapkota Gopal P., Boudeau Jérôme, Deak Maria, Kieloch Agnieszka, Morrice Nick, Alessi Dario R. Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome. Biochem J. 2002 Mar 1;362(Pt 2):481–490. doi: 10.1042/0264-6021:3620481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Steen H., Küster B., Fernandez M., Pandey A., Mann M. Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Anal Chem. 2001 Apr 1;73(7):1440–1448. doi: 10.1021/ac001318c. [DOI] [PubMed] [Google Scholar]
  20. Stensballe A., Andersen S., Jensen O. N. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. Proteomics. 2001 Feb;1(2):207–222. doi: 10.1002/1615-9861(200102)1:2<207::AID-PROT207>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  21. Wettenhall R. E., Aebersold R. H., Hood L. E. Solid-phase sequencing of 32P-labeled phosphopeptides at picomole and subpicomole levels. Methods Enzymol. 1991;201:186–199. doi: 10.1016/0076-6879(91)01017-v. [DOI] [PubMed] [Google Scholar]
  22. Woods Y. L., Rena G., Morrice N., Barthel A., Becker W., Guo S., Unterman T. G., Cohen P. The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem J. 2001 May 1;355(Pt 3):597–607. doi: 10.1042/bj3550597. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Biomolecular Techniques : JBT are provided here courtesy of The Association of Biomolecular Resource Facilities

RESOURCES