Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1993 Jul 1;178(1):211–222. doi: 10.1084/jem.178.1.211

Specific interaction of lymphocyte function-associated antigen 3 with CD2 can inhibit T cell responses

PMCID: PMC2191085  PMID: 7686212

Abstract

Accessory cell surface molecules, such as T cell antigen CD2 and its ligand lymphocyte function-associated antigen 3 (LFA-3; CD58), are critical costimulatory pathways for optimal T cell activation in response to antigens. Interaction of CD2 with cell surface LFA-3 not only increases T cell/accessory cell adhesion, but also induces signal transduction events involved in the regulation of T cell responses. In this report, we show that specific interactions of LFA-3 with CD2 can result in T cell unresponsiveness to antigenic or mitogenic stimuli in vitro. By deletion of certain regions of the extracellular domain of LFA-3, we localized the CD2 binding site to the first domain of LFA-3. We then demonstrated that a soluble, purified first domain-LFA-3/IgG1 fusion protein (LFA3TIP) interacts with CD2 and binds to the same CD2 epitope as purified multimeric or cell surface-expressed LFA-3. LFA3TIP inhibits tetanus toxoid, hepatitis B surface antigen, anti-CD3 mAb, Con A, and phytohemagglutinin P-induced T cell proliferation, as well as xenogeneic and allogeneic mixed lymphocyte reactions (MLR). Unlike anti- LFA-3 or anti-CD2 monoclonal antibodies (mAbs) which inhibit T cell responses by blocking LFA-3/CD2 binding, LFA3TIP is capable of rendering T cells unresponsive to antigenic stimuli in situations where T cell activation is independent of CD2/LFA-3 interactions. Furthermore, LFA3TIP, but not blocking anti-CD2 mAbs, is capable of inducing T cell unresponsiveness to secondary stimulation in allogeneic MLR. This inhibition of T cell responses by LFA3TIP occurs through a different mechanism from that of mAbs to LFA-3 or CD2.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcover A., Alberini C., Acuto O., Clayton L. K., Transy C., Spagnoli G. C., Moingeon P., Lopez P., Reinherz E. L. Interdependence of CD3-Ti and CD2 activation pathways in human T lymphocytes. EMBO J. 1988 Jul;7(7):1973–1977. doi: 10.1002/j.1460-2075.1988.tb03035.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barsoum J. Introduction of stable high-copy-number DNA into Chinese hamster ovary cells by electroporation. DNA Cell Biol. 1990 May;9(4):293–300. doi: 10.1089/dna.1990.9.293. [DOI] [PubMed] [Google Scholar]
  3. Bernabeu C., Carrera A. C., De Landázuri M. O., Sánchez-Madrid F. Interaction between the CD45 antigen and phytohemagglutinin. Inhibitory effect on the lectin-induced T cell proliferation by anti-CD45 monoclonal antibody. Eur J Immunol. 1987 Oct;17(10):1461–1466. doi: 10.1002/eji.1830171012. [DOI] [PubMed] [Google Scholar]
  4. Bockenstedt L. K., Goldsmith M. A., Dustin M., Olive D., Springer T. A., Weiss A. The CD2 ligand LFA-3 activates T cells but depends on the expression and function of the antigen receptor. J Immunol. 1988 Sep 15;141(6):1904–1911. [PubMed] [Google Scholar]
  5. Damle N. K., Klussman K., Linsley P. S., Aruffo A. Differential costimulatory effects of adhesion molecules B7, ICAM-1, LFA-3, and VCAM-1 on resting and antigen-primed CD4+ T lymphocytes. J Immunol. 1992 Apr 1;148(7):1985–1992. [PubMed] [Google Scholar]
  6. Danielian S., Alcover A., Polissard L., Stefanescu M., Acuto O., Fischer S., Fagard R. Both T cell receptor (TcR)-CD3 complex and CD2 increase the tyrosine kinase activity of p56lck. CD2 can mediate TcR-CD3-independent and CD45-dependent activation of p56lck. Eur J Immunol. 1992 Nov;22(11):2915–2921. doi: 10.1002/eji.1830221124. [DOI] [PubMed] [Google Scholar]
  7. Danielian S., Fagard R., Alcover A., Acuto O., Fischer S. The tyrosine kinase activity of p56lck is increased in human T cells activated via CD2. Eur J Immunol. 1991 Aug;21(8):1967–1970. doi: 10.1002/eji.1830210828. [DOI] [PubMed] [Google Scholar]
  8. Dustin M. L., Selvaraj P., Mattaliano R. J., Springer T. A. Anchoring mechanisms for LFA-3 cell adhesion glycoprotein at membrane surface. 1987 Oct 29-Nov 4Nature. 329(6142):846–848. doi: 10.1038/329846a0. [DOI] [PubMed] [Google Scholar]
  9. Dustin M. L., Springer T. A. Role of lymphocyte adhesion receptors in transient interactions and cell locomotion. Annu Rev Immunol. 1991;9:27–66. doi: 10.1146/annurev.iy.09.040191.000331. [DOI] [PubMed] [Google Scholar]
  10. Jenkins M. K., Taylor P. S., Norton S. D., Urdahl K. B. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol. 1991 Oct 15;147(8):2461–2466. [PubMed] [Google Scholar]
  11. June C. H., Fletcher M. C., Ledbetter J. A., Samelson L. E. Increases in tyrosine phosphorylation are detectable before phospholipase C activation after T cell receptor stimulation. J Immunol. 1990 Mar 1;144(5):1591–1599. [PubMed] [Google Scholar]
  12. Kanner S. B., Damle N. K., Blake J., Aruffo A., Ledbetter J. A. CD2/LFA-3 ligation induces phospholipase-C gamma 1 tyrosine phosphorylation and regulates CD3 signaling. J Immunol. 1992 Apr 1;148(7):2023–2029. [PubMed] [Google Scholar]
  13. Killeen N., Moessner R., Arvieux J., Willis A., Williams A. F. The MRC OX-45 antigen of rat leukocytes and endothelium is in a subset of the immunoglobulin superfamily with CD2, LFA-3 and carcinoembryonic antigens. EMBO J. 1988 Oct;7(10):3087–3091. doi: 10.1002/j.1460-2075.1988.tb03174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koyasu S., Lawton T., Novick D., Recny M. A., Siliciano R. F., Wallner B. P., Reinherz E. L. Role of interaction of CD2 molecules with lymphocyte function-associated antigen 3 in T-cell recognition of nominal antigen. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2603–2607. doi: 10.1073/pnas.87.7.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ledbetter J. A., Tonks N. K., Fischer E. H., Clark E. A. CD45 regulates signal transduction and lymphocyte activation by specific association with receptor molecules on T or B cells. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8628–8632. doi: 10.1073/pnas.85.22.8628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ley S. C., Davies A. A., Druker B., Crumpton M. J. The T cell receptor/CD3 complex and CD2 stimulate the tyrosine phosphorylation of indistinguishable patterns of polypeptides in the human T leukemic cell line Jurkat. Eur J Immunol. 1991 Sep;21(9):2203–2209. doi: 10.1002/eji.1830210931. [DOI] [PubMed] [Google Scholar]
  17. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  18. Moingeon P. E., Lucich J. L., Stebbins C. C., Recny M. A., Wallner B. P., Koyasu S., Reinherz E. L. Complementary roles for CD2 and LFA-1 adhesion pathways during T cell activation. Eur J Immunol. 1991 Mar;21(3):605–610. doi: 10.1002/eji.1830210311. [DOI] [PubMed] [Google Scholar]
  19. Moingeon P., Chang H. C., Wallner B. P., Stebbins C., Frey A. Z., Reinherz E. L. CD2-mediated adhesion facilitates T lymphocyte antigen recognition function. Nature. 1989 May 25;339(6222):312–314. doi: 10.1038/339312a0. [DOI] [PubMed] [Google Scholar]
  20. O'Flynn K., Krensky A. M., Beverley P. C., Burakoff S. J., Linch D. C. Phytohaemagglutinin activation of T cells through the sheep red blood cell receptor. Nature. 1985 Feb 21;313(6004):686–687. doi: 10.1038/313686a0. [DOI] [PubMed] [Google Scholar]
  21. Ohno H., Nakamura T., Yagita H., Okumura K., Taniguchi M., Saito T. Induction of negative signal through CD2 during antigen-specific T cell activation. J Immunol. 1991 Oct 1;147(7):2100–2106. [PubMed] [Google Scholar]
  22. Palacios R., Martinez-Maza O. Is the E receptor on human T lymphocytes a "negative signal receptor"? J Immunol. 1982 Dec;129(6):2479–2485. [PubMed] [Google Scholar]
  23. Pepinsky R. B., Chen L. L., Meier W., Wallner B. P. The increased potency of cross-linked lymphocyte function-associated antigen-3 (LFA-3) multimers is a direct consequence of changes in valency. J Biol Chem. 1991 Sep 25;266(27):18244–18249. [PubMed] [Google Scholar]
  24. Peterson A., Seed B. Monoclonal antibody and ligand binding sites of the T cell erythrocyte receptor (CD2). 1987 Oct 29-Nov 4Nature. 329(6142):842–846. doi: 10.1038/329842a0. [DOI] [PubMed] [Google Scholar]
  25. Savage C. O., Hughes C. C., Pepinsky R. B., Wallner B. P., Freedman A. S., Pober J. S. Endothelial cell lymphocyte function-associated antigen-3 and an unidentified ligand act in concert to provide costimulation to human peripheral blood CD4+ T cells. Cell Immunol. 1991 Oct 1;137(1):150–163. doi: 10.1016/0008-8749(91)90065-j. [DOI] [PubMed] [Google Scholar]
  26. Seed B. An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. 1987 Oct 29-Nov 4Nature. 329(6142):840–842. doi: 10.1038/329840a0. [DOI] [PubMed] [Google Scholar]
  27. Tiefenthaler G., Hünig T. The role of CD2/LFA-3 interaction in antigen- and mitogen-induced activation of human T cells. Int Immunol. 1989;1(2):169–175. doi: 10.1093/intimm/1.2.169. [DOI] [PubMed] [Google Scholar]
  28. Wallner B. P., Frey A. Z., Tizard R., Mattaliano R. J., Hession C., Sanders M. E., Dustin M. L., Springer T. A. Primary structure of lymphocyte function-associated antigen 3 (LFA-3). The ligand of the T lymphocyte CD2 glycoprotein. J Exp Med. 1987 Oct 1;166(4):923–932. doi: 10.1084/jem.166.4.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Webb D. S., Shimizu Y., Van Seventer G. A., Shaw S., Gerrard T. L. LFA-3, CD44, and CD45: physiologic triggers of human monocyte TNF and IL-1 release. Science. 1990 Sep 14;249(4974):1295–1297. doi: 10.1126/science.1697984. [DOI] [PubMed] [Google Scholar]
  30. Yang S. Y., Chouaib S., Dupont B. A common pathway for T lymphocyte activation involving both the CD3-Ti complex and CD2 sheep erythrocyte receptor determinants. J Immunol. 1986 Aug 15;137(4):1097–1100. [PubMed] [Google Scholar]
  31. Yssel H., Aubry J. P., de Waal Malefijt R., de Vries J. E., Spits H. Regulation by anti-CD2 monoclonal antibody of the activation of a human T cell clone induced by anti-CD3 or anti-T cell receptor antibodies. J Immunol. 1987 Nov 1;139(9):2850–2855. [PubMed] [Google Scholar]
  32. van Kooyk Y., van de Wiel-van Kemenade P., Weder P., Kuijpers T. W., Figdor C. G. Enhancement of LFA-1-mediated cell adhesion by triggering through CD2 or CD3 on T lymphocytes. Nature. 1989 Dec 14;342(6251):811–813. doi: 10.1038/342811a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES