Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1980 Jan 1;151(1):69–80. doi: 10.1084/jem.151.1.69

T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor

PMCID: PMC2185761  PMID: 6444236

Abstract

The results of this paper are consistent with the hypothesis that progressive growth of the Meth A fibrosarcoma evokes the generation of a T-cell-mediated mechanism of immunosuppression that prevents this highly immunogenic tumor from being rejected by its immunocompetent host. It was shown that it is possible to cause the regression of large, established Meth A tumors by intravenous infusion of tumor- sensitized T cells from immune donors, but only if the tumors are growing in T-cell-deficient recipients. It was also shown that the adoptive T-cell-mediated regression of tumors in such recipients can be prevented by prior infusion of splenic T cells from T-cell-intact, tumor-bearing donors. The results leave little doubt that the presence of suppressor T cells in T-cell-intact, tumor-bearing mice is responsible for the loss of an earlier generated state of concomitant immunity, and for the inability of intravenously infused, sensitized T cells to cause tumor regression. Because the presence of suppressor T cells generated in response to the Meth A did not suppress the capacity of Meth A-bearing mice to generate and express immunity against a tumor allograft, it is obvious that they were not in a state of generalized immunosuppression.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berendt M. J., North R. J., Kirstein D. P. The immunological basis of endotoxin-induced tumor regression. Requirement for T-cell-mediated immunity. J Exp Med. 1978 Dec 1;148(6):1550–1559. doi: 10.1084/jem.148.6.1550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cantor H., McVay-Boudreau L., Hugenberger J., Naidorf K., Shen F. W., Gershon R. K. Immunoregulatory circuits among T-cell sets. II. Physiologic role of feedback inhibition in vivo: absence in NZB mice. J Exp Med. 1978 Apr 1;147(4):1116–1125. doi: 10.1084/jem.147.4.1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chandradasa K. D. The development and specific suppression of concomitant immunity in two syngeneic tumour-host systems. Int J Cancer. 1973 May;11(3):648–662. doi: 10.1002/ijc.2910110316. [DOI] [PubMed] [Google Scholar]
  4. DeLeo A. B., Shiku H., Takahashi T., John M., Old L. J. Cell surface antigens of chemically induced sarcomas of the mouse. I. Murine leukemia virus-related antigens and alloantigens on cultured fibroblasts and sarcoma cells: description of a unique antigen on BALB/c Meth A sarcoma. J Exp Med. 1977 Sep 1;146(3):720–734. doi: 10.1084/jem.146.3.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deckers P. J., Davis R. C., Parker G. A., Mannick J. A. The effect of tumor size on concomitant tumor immunity. Cancer Res. 1973 Jan;33(1):33–39. [PubMed] [Google Scholar]
  6. Dresser D. W., Mitchison N. A. The mechanism of immunological paralysis. Adv Immunol. 1968;8:129–181. doi: 10.1016/s0065-2776(08)60466-6. [DOI] [PubMed] [Google Scholar]
  7. Eardley D. D., Hugenberger J., McVay-Boudreau L., Shen F. W., Gershon R. K., Cantor H. Immunoregulatory circuits among T-cell sets. I. T-helper cells induce other T-cell sets to exert feedback inhibition. J Exp Med. 1978 Apr 1;147(4):1106–1115. doi: 10.1084/jem.147.4.1106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fujimoto S., Greene M. I., Sehon A. H. Regualtion of the immune response to tumor antigens. I. Immunosuppressor cells in tumor-bearing hosts. J Immunol. 1976 Mar;116(3):791–799. [PubMed] [Google Scholar]
  9. Fujimoto S., Greene M. I., Sehon A. H. Regulation of the immune response to tumor antigens. II. The nature of immunosuppressor cells in tumor-bearing hosts. J Immunol. 1976 Mar;116(3):800–806. [PubMed] [Google Scholar]
  10. Gershon R. K. A disquisition on suppressor T cells. Transplant Rev. 1975;26:170–185. doi: 10.1111/j.1600-065x.1975.tb00179.x. [DOI] [PubMed] [Google Scholar]
  11. Greene M. I., Fujimoto S., Sehon A. H. Regulation of the immune response to tumor antigens. III. Characterization of thymic suppressor factor(s) produced by tumor-bearing hosts. J Immunol. 1977 Aug;119(2):757–764. [PubMed] [Google Scholar]
  12. Greene M. I., Perry L. L., Benacerraf B. Regulation of the immune response to tumor antigen. Am J Pathol. 1979 Apr;95(1):159–169. [PMC free article] [PubMed] [Google Scholar]
  13. Greene M. I., Perry L. L. Regulation of the immune response to tumor antigen. VI. Differential specificities of suppressor T cells or their products and effector T cells. J Immunol. 1978 Dec;121(6):2363–2366. [PubMed] [Google Scholar]
  14. Kuperman O., Fortner G. W., Lucas Z. J. Immune response to a syngeneic mammary adenocarcinoma. III. Development of memory and suppressor functions modulating cellular cytotoxicity. J Immunol. 1975 Nov;115(5):1282–1287. [PubMed] [Google Scholar]
  15. Malavé I., Blanca I., Fuji H. Influence of inoculation site on development of the Lewis lung carcinoma and suppressor cell activity in syngeneic mice. J Natl Cancer Inst. 1979 Jan;62(1):83–88. [PubMed] [Google Scholar]
  16. McCullagh P. J. The transfer of immunological competence to rats tolerant of sheep erythrocytes with lymphocytes from normal rats. Aust J Exp Biol Med Sci. 1970 Aug;48(4):351–367. doi: 10.1038/icb.1970.38. [DOI] [PubMed] [Google Scholar]
  17. Milas L., Hunter N., Mason K., Withers H. R. Immunological resistance to pulmonary metastases in C3Hf-Bu mice bearing syngeneic fibrosarcoma of different sizes. Cancer Res. 1974 Jan;34(1):61–71. [PubMed] [Google Scholar]
  18. Nachtigal D., Zan-Bar I., Feldman M. The role of specific suppressor T cells in immune tolerance. Transplant Rev. 1975;26:87–105. doi: 10.1111/j.1600-065x.1975.tb00176.x. [DOI] [PubMed] [Google Scholar]
  19. North R. J. Importance of thymus-derived lymphocytes in cell-mediated immunity to infection. Cell Immunol. 1973 Apr;7(1):166–176. doi: 10.1016/0008-8749(73)90193-7. [DOI] [PubMed] [Google Scholar]
  20. Perry L. L., Benacerraf B., Greene M. I. Regulation of the immune response to tumor antigen. IV. Tumor antigen-specific suppressor factor(s) bear I-J determinants and induce suppressor T cells in vivo. J Immunol. 1978 Dec;121(6):2144–2147. [PubMed] [Google Scholar]
  21. Rosenberg S. A., Terry W. D. Passive immunotherapy of cancer in animals and man. Adv Cancer Res. 1977;25:323–388. doi: 10.1016/s0065-230x(08)60637-5. [DOI] [PubMed] [Google Scholar]
  22. Treves A. J., Carnaud C., Trainin N., Feldman M., Cohen I. R. Enhancing T lymphocytes from tumor-bearing mice suppress host resistance to a syngeneic tumor. Eur J Immunol. 1974 Nov;4(11):722–727. doi: 10.1002/eji.1830041104. [DOI] [PubMed] [Google Scholar]
  23. Vaage J., Agarwal S. Stimulation or inhibition of immune resistance against metastatic or local growth of a C3H mammary carcinoma. Cancer Res. 1976 May;36(5):1831–1836. [PubMed] [Google Scholar]
  24. Vaage J. Concomitant immunity and specific depression of immunity by residual or reinjected syngeneic tumor tissue. Cancer Res. 1971 Nov;31(11):1655–1662. [PubMed] [Google Scholar]
  25. Vaage J. Influence of tumor antigen on maintenance versus depression of tumor-specific immunity. Cancer Res. 1973 Mar;33(3):493–503. [PubMed] [Google Scholar]
  26. Weigle W. O., Sieckmann D. G., Doyle M. V., Chiller J. M. Possible roles of suppressor cells in immunologic tolerance. Transplant Rev. 1975;26:186–205. doi: 10.1111/j.1600-065x.1975.tb00180.x. [DOI] [PubMed] [Google Scholar]
  27. Yuhas J. M., Pazmiño N. H., Wagner E. Development of concomitant immunity in mice bearing the weakly immunogenic line 1 lung carcinoma. Cancer Res. 1975 Jan;35(1):237–241. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES