Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Jul 1;105(1):137–143. doi: 10.1083/jcb.105.1.137

Synthesis of globin RNA in enucleated differentiating murine erythroleukemia cells

PMCID: PMC2114878  PMID: 3475275

Abstract

In an earlier report (Volloch, V., 1986, Proc. Natl. Acad. Sci. USA., 83:1208-1212) we had presented evidence for the occurrence of the cytoplasmic synthesis of globin mRNA and of RNA complementary to globin mRNA which differed from DNA-dependent transcription by its insensitivity to actinomycin D. In this paper, we describe the use of enucleated differentiating mouse erythroleukemia cells to demonstrate directly the occurrence of cytoplasmic synthesis of both positive- and negative-strand globin RNA. For this purpose, we developed an enucleation procedure which yielded pure cytoplasts from differentiated mouse erythroleukemia cells in the absence of cytochalasin B and selectively permeabilized the cytoplasts to small molecules by treatment with dextran sulfate and saponin. The permeabilized cytoplasts incorporated [3H]dUTP into positive- and negative-strand globin RNA and experiments with mercurated nucleotide substrate suggested that this process involved de novo RNA synthesis rather than limited terminal nucleotide addition. Globin RNA synthesis required Mg++, was inhibited by Mn++, and was unaffected by the addition of Zn++. Studies of its response to inhibitors of DNA-dependent RNA synthesis showed that it differed from that process in its insensitivity to actinomycin D and alpha-amanitin, but that like many other macromolecular biosynthetic reactions it was inhibited by rifamycin AF/ABDP and aurintricarboxylic acid. These observations provide additional evidence for the occurrence of cytoplasmic RNA- dependent RNA synthesis in differentiated cells and show permeabilized enucleated cells to be a useful experimental system for further studies of the characteristics of that process.

Full Text

The Full Text of this article is available as a PDF (796.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman R., Schultz L. D., Hall B. D. Transcription in yeast: separation and properties of multiple FNA polymerases. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1702–1706. doi: 10.1073/pnas.69.7.1702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banfalvi G., Bhattacharya S., Sarkar N. Selective isolation of mercurated DNA by affinity chromatography on thiol matrices. Anal Biochem. 1985 Apr;146(1):64–70. doi: 10.1016/0003-2697(85)90396-3. [DOI] [PubMed] [Google Scholar]
  3. Baron M. H., Baltimore D. In vitro copying of viral positive strand RNA by poliovirus replicase. Characterization of the reaction and its products. J Biol Chem. 1982 Oct 25;257(20):12359–12366. [PubMed] [Google Scholar]
  4. Blumenthal T., Landers T. A. The inhibition of nucleic acid-binding proteins by aurintricarboxylic acid. Biochem Biophys Res Commun. 1973 Dec 10;55(3):680–688. doi: 10.1016/0006-291x(73)91198-4. [DOI] [PubMed] [Google Scholar]
  5. Croce C. M., Koprowski H. Enucleation of cells made simple and rescue of SV40 by enucleated cells made even simpler. Virology. 1973 Jan;51(1):227–229. doi: 10.1016/0042-6822(73)90382-6. [DOI] [PubMed] [Google Scholar]
  6. Croce C. M., Litwack G., Koprowski H. Human regulatory gene for inducible tyrosine aminotransferase in rat-human hybrids. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1268–1272. doi: 10.1073/pnas.70.4.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dale R. M., Ward D. C. Mercurated polynucleotides: new probes for hybridization and selective polymer fractionation. Biochemistry. 1975 Jun 3;14(11):2458–2469. doi: 10.1021/bi00682a028. [DOI] [PubMed] [Google Scholar]
  8. Dasgupta A., Baron M. H., Baltimore D. Poliovirus replicase: a soluble enzyme able to initiate copying of poliovirus RNA. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2679–2683. doi: 10.1073/pnas.76.6.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Downey K. M., Byrnes J. J., Jurmark B. S., So A. G. Reticulocyte RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3400–3404. doi: 10.1073/pnas.70.12.3400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fibach E., Reuben R. C., Rifkind R. A., Marks P. A. Effect of hexamethylene bisacetamide on the commitment to differentiation of murine erythroleukemia cells. Cancer Res. 1977 Feb;37(2):440–444. [PubMed] [Google Scholar]
  11. Flanegan J. B., Baltimore D. Poliovirus-specific primer-dependent RNA polymerase able to copy poly(A). Proc Natl Acad Sci U S A. 1977 Sep;74(9):3677–3680. doi: 10.1073/pnas.74.9.3677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Givens J. F., Manly K. F. Inhibition of RNA-directed DNA polymerase by aurintricarboxylic acid. Nucleic Acids Res. 1976 Feb;3(2):405–418. doi: 10.1093/nar/3.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gusella J., Geller R., Clarke B., Weeks V., Housman D. Commitment to erythroid differentiation by friend erythroleukemia cells: a stochastic analysis. Cell. 1976 Oct;9(2):221–229. doi: 10.1016/0092-8674(76)90113-6. [DOI] [PubMed] [Google Scholar]
  14. Ivarie R. D., Fan W. J., Tomkins G. M. Analysis of the induction and deinduction of tyrosine aminotransferase in enucleated HTC cells. J Cell Physiol. 1975 Apr;85(2 Pt 2 Suppl 1):357–364. doi: 10.1002/jcp.1040850404. [DOI] [PubMed] [Google Scholar]
  15. Kos K. A., Osborne B. A., Goldsby R. A. Inhibition of group B arbovirus antigen production and replication in cells enucleated with cytochalasin B. J Virol. 1975 Apr;15(4):913–917. doi: 10.1128/jvi.15.4.913-917.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kucera R., Paulus H. Studied on ribonucleoside-diphosphate reductase in permeable animal cells. I. Reversible permeabilization of mouse L cells with dextran sulfate. Arch Biochem Biophys. 1982 Mar;214(1):102–113. doi: 10.1016/0003-9861(82)90012-1. [DOI] [PubMed] [Google Scholar]
  17. Lieberman D., Voloch Z., Aviv H., Nudel U., Revel M. Effects of interferon on hemoglobin synthesis and leukemia virus production in Friend cells. Mol Biol Rep. 1974 Dec;1(8):447–451. doi: 10.1007/BF00360670. [DOI] [PubMed] [Google Scholar]
  18. Marks P. A., Rifkind R. A. Erythroleukemic differentiation. Annu Rev Biochem. 1978;47:419–448. doi: 10.1146/annurev.bi.47.070178.002223. [DOI] [PubMed] [Google Scholar]
  19. Mildvan A. S., Loeb L. A. The role of metal ions in the mechanisms of DNA and RNA polymerases. CRC Crit Rev Biochem. 1979;6(3):219–244. doi: 10.3109/10409237909102564. [DOI] [PubMed] [Google Scholar]
  20. Miller M. R., Castellot J. J., Jr, Pardee A. B. A permeable animal cell preparation for studying macromolecular synthesis. DNA synthesis and the role of deoxyribonucleotides in S phase initiation. Biochemistry. 1978 Mar 21;17(6):1073–1080. doi: 10.1021/bi00599a021. [DOI] [PubMed] [Google Scholar]
  21. Muller C. P., Volloch Z., Shinitzky M. Correlation between cell density, membrane fluidity, and the availability of transferrin receptors in Friend erythroleukemic cells. Cell Biophys. 1980 Sep;2(3):233–240. doi: 10.1007/BF02790451. [DOI] [PubMed] [Google Scholar]
  22. Noyes B. E., Stark G. R. Nucleic acid hybridization using DNA covalently coupled to cellulose. Cell. 1975 Jul;5(3):301–310. doi: 10.1016/0092-8674(75)90105-1. [DOI] [PubMed] [Google Scholar]
  23. Oda T., Watanabe S., Maki Y., Iwamoto H., Hanakawa S. DNA replication of simian virus 40 chromatin in digitonin-treated and saponin-treated permeable cells. Biochem Int. 1984 Dec;9(6):763–769. [PubMed] [Google Scholar]
  24. Prescott D. M., Myerson D., Wallace J. Enucleation of mammalian cells with cytochalasin B. Exp Cell Res. 1972;71(2):480–485. doi: 10.1016/0014-4827(72)90322-9. [DOI] [PubMed] [Google Scholar]
  25. Profous-Juchelka H. R., Reuben R. C., Marks P. A., Rifkind R. A. Transcriptional and post-transcriptional regulation of globin gene accumulation in murine erythroleukemia cells. Mol Cell Biol. 1983 Feb;3(2):229–232. doi: 10.1128/mcb.3.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sirover M. A., Loeb L. A. Metal activation of DNA synthesis. Biochem Biophys Res Commun. 1976 Jun 7;70(3):812–817. doi: 10.1016/0006-291x(76)90664-1. [DOI] [PubMed] [Google Scholar]
  27. Sokol F., Koprowski H. Structure-function relationships and mode of replication of animal rhabdoviruses. Proc Natl Acad Sci U S A. 1975 Mar;72(3):933–936. doi: 10.1073/pnas.72.3.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Varmus H. E., Guntaka R. V., Fan W. J., Heasley S., Bishop J. M. Synthesis of viral DNA in the cytoplasm of duck embryo fibroblasts and in enucleated cells after infection by avian sarcoma virus. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3874–3878. doi: 10.1073/pnas.71.10.3874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Volloch V. Cytoplasmic synthesis of globin RNA in differentiated murine erythroleukemia cells: possible involvement of RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1208–1212. doi: 10.1073/pnas.83.5.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Volloch V., Housman D. Stability of globin mRNA in terminally differentiating murine erythroleukemia cells. Cell. 1981 Feb;23(2):509–514. doi: 10.1016/0092-8674(81)90146-x. [DOI] [PubMed] [Google Scholar]
  31. Volloch V., Housman D. Terminal differentiation of murine erythroleukemia cells: physical stabilization of end-stage cells. J Cell Biol. 1982 May;93(2):390–394. doi: 10.1083/jcb.93.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wigler M. H., Weinstein I. B. A preparative method for obtaining enucleated mammalian cells. Biochem Biophys Res Commun. 1975 Apr 7;63(3):669–674. doi: 10.1016/s0006-291x(75)80436-0. [DOI] [PubMed] [Google Scholar]
  33. Wu A. M., Ting R. C., Gallo R. C. RNA-directed DNA polymerase and virus-induced leukemia in mice. Proc Natl Acad Sci U S A. 1973 May;70(5):1298–1302. doi: 10.1073/pnas.70.5.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Young C. S., Pringle C. R., Follett E. A. Action of interferon in enucleated cells. J Virol. 1975 Feb;15(2):428–429. doi: 10.1128/jvi.15.2.428-429.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES