Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Sep;70(9):5935–5943. doi: 10.1128/jvi.70.9.5935-5943.1996

Full-length sequence and mosaic structure of a human immunodeficiency virus type 1 isolate from Thailand.

J K Carr 1, M O Salminen 1, C Koch 1, D Gotte 1, A W Artenstein 1, P A Hegerich 1, D St Louis 1, D S Burke 1, F E McCutchan 1
PMCID: PMC190613  PMID: 8709215

Abstract

Human immunodeficiency virus type 1 isolates of envelope genotype E are contributing substantially to the global pandemic. These strains appear to be mosaics, with the gag gene from clade A and the envelope from clade E; the parental clade E strain has not been found. Here we report the first full genomic sequence of one such mosaic virus, isolate CM240 from Thailand. Multiple breakpoints between the two parental genotypes have been found in a CM240 virus. The entire gag-pol region and most, if not all, of the accessory genes vif, vpr, tat, rev, and vpu appear to derive from clade A. The genotype switches to E shortly after the signal peptide of the envelope and back to clade A near the middle of gp41; thus, the portion of the envelope that lies on the cytoplasmic side of the membrane appears to be principally derived not from clade E, as previously thought, but from clade A. Another small segment not belonging to any recognized clade and presumably also contributed by the parental E strain has been found in the long terminal repeat. It may be significant that the implied virion structure resembles a pseudotype virus with the matrix and core from one clade and the outer envelope from another. In the long terminal repeat, differences were observed between CM240 and other clades in the number of NF-kappa B binding sites, the sequence of the TATA box, and the putative secondary structure of the transactivation response region stem-loop. The mosaic structure of a CM240 virion is suggestive of phenotypic differences which might have contributed to the emergence of this variant.

Full Text

The Full Text of this article is available as a PDF (575.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artenstein A. W., Coppola J., Brown A. E., Carr J. K., Sanders-Buell E., Galbarini E., Mascola J. R., VanCott T. C., Schonbrood P., McCutchan F. E. Multiple introductions of HIV-1 subtype E into the western hemisphere. Lancet. 1995 Nov 4;346(8984):1197–1198. doi: 10.1016/s0140-6736(95)92900-2. [DOI] [PubMed] [Google Scholar]
  2. Artenstein A. W., Hegerich P. A., Beyrer C., Rungruengthanakit K., Michael N. L., Natpratan C. Sequences and phylogenetic analysis of the nef gene from Thai subjects harboring subtype E HIV-1. AIDS Res Hum Retroviruses. 1996 Apr 10;12(6):557–560. doi: 10.1089/aid.1996.12.557. [DOI] [PubMed] [Google Scholar]
  3. Bender W., Chien Y. H., Chattopadhyay S., Vogt P. K., Gardner M. B., Davidson N. High-molecular-weight RNAs of AKR, NZB, and wild mouse viruses and avian reticuloendotheliosis virus all have similar dimer structures. J Virol. 1978 Mar;25(3):888–896. doi: 10.1128/jvi.25.3.888-896.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berkhout B., Silverman R. H., Jeang K. T. Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell. 1989 Oct 20;59(2):273–282. doi: 10.1016/0092-8674(89)90289-4. [DOI] [PubMed] [Google Scholar]
  5. Boettiger D. Animal virus pseudotypes. Prog Med Virol. 1979;25:37–68. [PubMed] [Google Scholar]
  6. Brodine S. K., Mascola J. R., Weiss P. J., Ito S. I., Porter K. R., Artenstein A. W., Garland F. C., McCutchan F. E., Burke D. S. Detection of diverse HIV-1 genetic subtypes in the USA. Lancet. 1995 Nov 4;346(8984):1198–1199. doi: 10.1016/s0140-6736(95)92901-0. [DOI] [PubMed] [Google Scholar]
  7. Brown P. O., Bowerman B., Varmus H. E., Bishop J. M. Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2525–2529. doi: 10.1073/pnas.86.8.2525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burke D. S., Fowler A. K., Redfield R. R., Dilworth S., Oster C. N. Isolation of HIV-1 from the blood of seropositive adults: patient stage of illness and sample inoculum size are major determinants of a positive culture. The Walter Reed Retroviral Research Group. J Acquir Immune Defic Syndr. 1990;3(12):1159–1167. [PubMed] [Google Scholar]
  9. Cullen B. R., Garrett E. D. A comparison of regulatory features in primate lentiviruses. AIDS Res Hum Retroviruses. 1992 Mar;8(3):387–393. doi: 10.1089/aid.1992.8.387. [DOI] [PubMed] [Google Scholar]
  10. Cullen B. R. The HIV-1 Tat protein: an RNA sequence-specific processivity factor? Cell. 1990 Nov 16;63(4):655–657. doi: 10.1016/0092-8674(90)90129-3. [DOI] [PubMed] [Google Scholar]
  11. Daly T. J., Cook K. S., Gray G. S., Maione T. E., Rusche J. R. Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro. Nature. 1989 Dec 14;342(6251):816–819. doi: 10.1038/342816a0. [DOI] [PubMed] [Google Scholar]
  12. Endo S., Kubota S., Siomi H., Adachi A., Oroszlan S., Maki M., Hatanaka M. A region of basic amino-acid cluster in HIV-1 Tat protein is essential for trans-acting activity and nucleolar localization. Virus Genes. 1989 Nov;3(2):99–110. doi: 10.1007/BF00125123. [DOI] [PubMed] [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
  14. Feng S., Holland E. C. HIV-1 tat trans-activation requires the loop sequence within tar. Nature. 1988 Jul 14;334(6178):165–167. doi: 10.1038/334165a0. [DOI] [PubMed] [Google Scholar]
  15. Frankel A. D. Activation of HIV transcription by Tat. Curr Opin Genet Dev. 1992 Apr;2(2):293–298. doi: 10.1016/s0959-437x(05)80287-4. [DOI] [PubMed] [Google Scholar]
  16. Grilli M., Chiu J. J., Lenardo M. J. NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytol. 1993;143:1–62. doi: 10.1016/s0074-7696(08)61873-2. [DOI] [PubMed] [Google Scholar]
  17. Guyader M., Emerman M., Sonigo P., Clavel F., Montagnier L., Alizon M. Genome organization and transactivation of the human immunodeficiency virus type 2. Nature. 1987 Apr 16;326(6114):662–669. doi: 10.1038/326662a0. [DOI] [PubMed] [Google Scholar]
  18. Hammarskjöld M. L., Heimer J., Hammarskjöld B., Sangwan I., Albert L., Rekosh D. Regulation of human immunodeficiency virus env expression by the rev gene product. J Virol. 1989 May;63(5):1959–1966. doi: 10.1128/jvi.63.5.1959-1966.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hu W. S., Temin H. M. Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1556–1560. doi: 10.1073/pnas.87.4.1556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Janssens W., Heyndrickx L., Fransen K., Motte J., Peeters M., Nkengasong J. N., Ndumbe P. M., Delaporte E., Perret J. L., Atende C. Genetic and phylogenetic analysis of env subtypes G and H in central Africa. AIDS Res Hum Retroviruses. 1994 Jul;10(7):877–879. doi: 10.1089/aid.1994.10.877. [DOI] [PubMed] [Google Scholar]
  21. Kalish M. L., Baldwin A., Raktham S., Wasi C., Luo C. C., Schochetman G., Mastro T. D., Young N., Vanichseni S., Rübsamen-Waigmann H. The evolving molecular epidemiology of HIV-1 envelope subtypes in injecting drug users in Bangkok, Thailand: implications for HIV vaccine trials. AIDS. 1995 Aug;9(8):851–857. doi: 10.1097/00002030-199508000-00004. [DOI] [PubMed] [Google Scholar]
  22. Leitner T., Escanilla D., Marquina S., Wahlberg J., Broström C., Hansson H. B., Uhlén M., Albert J. Biological and molecular characterization of subtype D, G, and A/D recombinant HIV-1 transmissions in Sweden. Virology. 1995 May 10;209(1):136–146. doi: 10.1006/viro.1995.1237. [DOI] [PubMed] [Google Scholar]
  23. Louwagie J., Janssens W., Mascola J., Heyndrickx L., Hegerich P., van der Groen G., McCutchan F. E., Burke D. S. Genetic diversity of the envelope glycoprotein from human immunodeficiency virus type 1 isolates of African origin. J Virol. 1995 Jan;69(1):263–271. doi: 10.1128/jvi.69.1.263-271.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Louwagie J., McCutchan F. E., Peeters M., Brennan T. P., Sanders-Buell E., Eddy G. A., van der Groen G., Fransen K., Gershy-Damet G. M., Deleys R. Phylogenetic analysis of gag genes from 70 international HIV-1 isolates provides evidence for multiple genotypes. AIDS. 1993 Jun;7(6):769–780. doi: 10.1097/00002030-199306000-00003. [DOI] [PubMed] [Google Scholar]
  25. Marciniak R. A., Calnan B. J., Frankel A. D., Sharp P. A. HIV-1 Tat protein trans-activates transcription in vitro. Cell. 1990 Nov 16;63(4):791–802. doi: 10.1016/0092-8674(90)90145-5. [DOI] [PubMed] [Google Scholar]
  26. McCutchan F. E., Hegerich P. A., Brennan T. P., Phanuphak P., Singharaj P., Jugsudee A., Berman P. W., Gray A. M., Fowler A. K., Burke D. S. Genetic variants of HIV-1 in Thailand. AIDS Res Hum Retroviruses. 1992 Nov;8(11):1887–1895. doi: 10.1089/aid.1992.8.1887. [DOI] [PubMed] [Google Scholar]
  27. Michael N. L., D'Arcy L., Ehrenberg P. K., Redfield R. R. Naturally occurring genotypes of the human immunodeficiency virus type 1 long terminal repeat display a wide range of basal and Tat-induced transcriptional activities. J Virol. 1994 May;68(5):3163–3174. doi: 10.1128/jvi.68.5.3163-3174.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Murphy E., Korber B., Georges-Courbot M. C., You B., Pinter A., Cook D., Kieny M. P., Georges A., Mathiot C., Barré-Sinoussi F. Diversity of V3 region sequences of human immunodeficiency viruses type 1 from the central African Republic. AIDS Res Hum Retroviruses. 1993 Oct;9(10):997–1006. doi: 10.1089/aid.1993.9.997. [DOI] [PubMed] [Google Scholar]
  29. Nkengasong J. N., Janssens W., Heyndrickx L., Fransen K., Ndumbe P. M., Motte J., Leonaers A., Ngolle M., Ayuk J., Piot P. Genotypic subtypes of HIV-1 in Cameroon. AIDS. 1994 Oct;8(10):1405–1412. doi: 10.1097/00002030-199410000-00006. [DOI] [PubMed] [Google Scholar]
  30. Ou C. Y., Takebe Y., Luo C. C., Kalish M., Auwanit W., Bandea C., de la Torre N., Moore J. L., Schochetman G., Yamazaki S. Wide distribution of two subtypes of HIV-1 in Thailand. AIDS Res Hum Retroviruses. 1992 Aug;8(8):1471–1472. doi: 10.1089/aid.1992.8.1471. [DOI] [PubMed] [Google Scholar]
  31. Robertson D. L., Hahn B. H., Sharp P. M. Recombination in AIDS viruses. J Mol Evol. 1995 Mar;40(3):249–259. doi: 10.1007/BF00163230. [DOI] [PubMed] [Google Scholar]
  32. Robertson D. L., Sharp P. M., McCutchan F. E., Hahn B. H. Recombination in HIV-1. Nature. 1995 Mar 9;374(6518):124–126. doi: 10.1038/374124b0. [DOI] [PubMed] [Google Scholar]
  33. Roy S., Delling U., Chen C. H., Rosen C. A., Sonenberg N. A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes Dev. 1990 Aug;4(8):1365–1373. doi: 10.1101/gad.4.8.1365. [DOI] [PubMed] [Google Scholar]
  34. Salminen M. O., Carr J. K., Burke D. S., McCutchan F. E. Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning. AIDS Res Hum Retroviruses. 1995 Nov;11(11):1423–1425. doi: 10.1089/aid.1995.11.1423. [DOI] [PubMed] [Google Scholar]
  35. Salminen M. O., Koch C., Sanders-Buell E., Ehrenberg P. K., Michael N. L., Carr J. K., Burke D. S., McCutchan F. E. Recovery of virtually full-length HIV-1 provirus of diverse subtypes from primary virus cultures using the polymerase chain reaction. Virology. 1995 Oct 20;213(1):80–86. doi: 10.1006/viro.1995.1548. [DOI] [PubMed] [Google Scholar]
  36. Siebenlist U., Franzoso G., Brown K. Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol. 1994;10:405–455. doi: 10.1146/annurev.cb.10.110194.002201. [DOI] [PubMed] [Google Scholar]
  37. Sirisopana N., Torugsa K., Mason C. J., Markowitz L. E., Jugsudee A., Supapongse T., Chuenchitra C., Michael R. A., Burke D. S., Singharaj P. Correlates of HIV-1 seropositivity among young men in Thailand. J Acquir Immune Defic Syndr Hum Retrovirol. 1996 Apr 15;11(5):492–498. doi: 10.1097/00042560-199604150-00010. [DOI] [PubMed] [Google Scholar]
  38. Sodroski J., Goh W. C., Rosen C., Dayton A., Terwilliger E., Haseltine W. A second post-transcriptional trans-activator gene required for HTLV-III replication. Nature. 1986 May 22;321(6068):412–417. doi: 10.1038/321412a0. [DOI] [PubMed] [Google Scholar]
  39. Spector D. H., Wade E., Wright D. A., Koval V., Clark C., Jaquish D., Spector S. A. Human immunodeficiency virus pseudotypes with expanded cellular and species tropism. J Virol. 1990 May;64(5):2298–2308. doi: 10.1128/jvi.64.5.2298-2308.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Srinivasan A., York D., Butler D., Jr, Jannoun-Nasr R., Getchell J., McCormick J., Ou C. Y., Myers G., Smith T., Chen E. Molecular characterization of HIV-1 isolated from a serum collected in 1976: nucleotide sequence comparison to recent isolates and generation of hybrid HIV. AIDS Res Hum Retroviruses. 1989 Apr;5(2):121–129. doi: 10.1089/aid.1989.5.121. [DOI] [PubMed] [Google Scholar]
  41. Stuhlmann H., Berg P. Homologous recombination of copackaged retrovirus RNAs during reverse transcription. J Virol. 1992 Apr;66(4):2378–2388. doi: 10.1128/jvi.66.4.2378-2388.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wasi C., Herring B., Raktham S., Vanichseni S., Mastro T. D., Young N. L., Rübsamen-Waigmann H., von Briesen H., Kalish M. L., Luo C. C. Determination of HIV-1 subtypes in injecting drug users in Bangkok, Thailand, using peptide-binding enzyme immunoassay and heteroduplex mobility assay: evidence of increasing infection with HIV-1 subtype E. AIDS. 1995 Aug;9(8):843–849. doi: 10.1097/00002030-199508000-00003. [DOI] [PubMed] [Google Scholar]
  43. Weniger B. G., Limpakarnjanarat K., Ungchusak K., Thanprasertsuk S., Choopanya K., Vanichseni S., Uneklabh T., Thongcharoen P., Wasi C. The epidemiology of HIV infection and AIDS in Thailand. AIDS. 1991;5 (Suppl 2):S71–S85. doi: 10.1097/00002030-199101001-00011. [DOI] [PubMed] [Google Scholar]
  44. Weniger B. G., Takebe Y., Ou C. Y., Yamazaki S. The molecular epidemiology of HIV in Asia. AIDS. 1994;8 (Suppl 2):S13–S28. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES