Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 2000 Nov;59(11):883–886. doi: 10.1136/ard.59.11.883

Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis

M Brown 1, S Laval 1, S Brophy 1, A Calin 1
PMCID: PMC1753017  PMID: 11053066

Abstract

OBJECTIVES—It has long been suspected that susceptibility to ankylosing spondylitis (AS) is influenced by genes lying distant to the major histocompatibility complex. This study compares genetic models of AS to assess the most likely mode of inheritance, using recurrence risk ratios in relatives of affected subjects.
METHODS—Recurrence risk ratios in different degrees of relatives were determined using published data from studies specifically designed to address the question. The methods of Risch were used to determine the expected recurrence risk ratios in different degrees of relatives, assuming equal first degree relative recurrence risk between models. Goodness of fit was determined by χ2 comparison of the expected number of affected subjects with the observed number, given equal numbers of each type of relative studied.
RESULTS—The recurrence risks in different degrees of relatives were: monozygotic (MZ) twins 63% (17/27), first degree relatives 8.2% (441/5390), second degree relatives 1.0% (8/834), and third degree relatives 0.7% (7/997). Parent-child recurrence risk (7.9%, 37/466) was not significantly different from the sibling recurrence risk (8.2%, 404/4924), excluding a significant dominance genetic component to susceptibility. Poor fitting models included single gene, genetic heterogeneity, additive, two locus multiplicative, and one locus and residual polygenes (χ2 >32 (two degrees of freedom), p<10−6 for all models). The best fitting model studied was a five locus model with multiplicative interaction between loci (χ2=1.4 (two degrees of freedom), p=0.5). Oligogenic multiplicative models were the best fitting over a range of population prevalences and first degree recurrence risk rates.
CONCLUSIONS—This study suggests that of the genetic models tested, the most likely model operating in AS is an oligogenic model with predominantly multiplicative interaction between loci.



Full Text

The Full Text of this article is available as a PDF (134.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnett F. C., Jr, Schacter B. Z., Hochberg M. C., Hsu S. H., Bias W. B. Homozygosity for HLA-B27. Impact on rheumatic disease expression in two families. Arthritis Rheum. 1977 Apr;20(3):797–804. doi: 10.1002/art.1780200306. [DOI] [PubMed] [Google Scholar]
  2. Beyeler C., Armstrong M., Bird H. A., Idle J. R., Daly A. K. Relationship between genotype for the cytochrome P450 CYP2D6 and susceptibility to ankylosing spondylitis and rheumatoid arthritis. Ann Rheum Dis. 1996 Jan;55(1):66–68. doi: 10.1136/ard.55.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braun J., Bollow M., Remlinger G., Eggens U., Rudwaleit M., Distler A., Sieper J. Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors. Arthritis Rheum. 1998 Jan;41(1):58–67. doi: 10.1002/1529-0131(199801)41:1<58::AID-ART8>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  4. Brewerton D. A., Hart F. D., Nicholls A., Caffrey M., James D. C., Sturrock R. D. Ankylosing spondylitis and HL-A 27. Lancet. 1973 Apr 28;1(7809):904–907. doi: 10.1016/s0140-6736(73)91360-3. [DOI] [PubMed] [Google Scholar]
  5. Brown M. A., Kennedy L. G., MacGregor A. J., Darke C., Duncan E., Shatford J. L., Taylor A., Calin A., Wordsworth P. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 1997 Oct;40(10):1823–1828. doi: 10.1002/art.1780401015. [DOI] [PubMed] [Google Scholar]
  6. Brown M. A., Pile K. D., Kennedy L. G., Calin A., Darke C., Bell J., Wordsworth B. P., Cornélis F. HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom. Ann Rheum Dis. 1996 Apr;55(4):268–270. doi: 10.1136/ard.55.4.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown M. A., Pile K. D., Kennedy L. G., Campbell D., Andrew L., March R., Shatford J. L., Weeks D. E., Calin A., Wordsworth B. P. A genome-wide screen for susceptibility loci in ankylosing spondylitis. Arthritis Rheum. 1998 Apr;41(4):588–595. doi: 10.1002/1529-0131(199804)41:4<588::AID-ART5>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  8. Calin A., Brophy S., Blake D. Impact of sex on inheritance of ankylosing spondylitis: a cohort study. Lancet. 1999 Nov 13;354(9191):1687–1690. doi: 10.1016/S0140-6736(99)03219-5. [DOI] [PubMed] [Google Scholar]
  9. Carter N., Williamson L., Kennedy L. G., Brown M. A., Wordsworth B. P. Susceptibility to ankylosing spondylitis. Rheumatology (Oxford) 2000 Apr;39(4):445–445. doi: 10.1093/rheumatology/39.4.445. [DOI] [PubMed] [Google Scholar]
  10. Höhler T., Schäper T., Schneider P. M., Meyer zum Büschenfelde K. H., Märker-Hermann E. Association of different tumor necrosis factor alpha promoter allele frequencies with ankylosing spondylitis in HLA-B27 positive individuals. Arthritis Rheum. 1998 Aug;41(8):1489–1492. doi: 10.1002/1529-0131(199808)41:8<1489::AID-ART20>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  11. Järvinen P. Occurrence of ankylosing spondylitis in a nationwide series of twins. Arthritis Rheum. 1995 Mar;38(3):381–383. doi: 10.1002/art.1780380313. [DOI] [PubMed] [Google Scholar]
  12. Risch N. Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet. 1990 Feb;46(2):222–228. [PMC free article] [PubMed] [Google Scholar]
  13. Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science. 1996 Sep 13;273(5281):1516–1517. doi: 10.1126/science.273.5281.1516. [DOI] [PubMed] [Google Scholar]
  14. Robinson W. P., van der Linden S. M., Khan M. A., Rentsch H. U., Cats A., Russell A., Thomson G. HLA-Bw60 increases susceptibility to ankylosing spondylitis in HLA-B27+ patients. Arthritis Rheum. 1989 Sep;32(9):1135–1141. doi: 10.1002/anr.1780320912. [DOI] [PubMed] [Google Scholar]
  15. Rubin L. A., Amos C. I., Wade J. A., Martin J. R., Bale S. J., Little A. H., Gladman D. D., Bonney G. E., Rubenstein J. D., Siminovitch K. A. Investigating the genetic basis for ankylosing spondylitis. Linkage studies with the major histocompatibility complex region. Arthritis Rheum. 1994 Aug;37(8):1212–1220. doi: 10.1002/art.1780370816. [DOI] [PubMed] [Google Scholar]
  16. Suarez-Almazor M. E., Russell A. S. B27 homozygosity and ankylosing spondylitis. J Rheumatol. 1987 Apr;14(2):302–304. [PubMed] [Google Scholar]
  17. de BLECOURT J., POLMAN A., de BLECOURT-MEINDERSMA Hereditary factors in rheumatoid arthritis and ankylosing spondylitis. Ann Rheum Dis. 1961 Sep;20:215–220. doi: 10.1136/ard.20.3.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. van der Linden S., Valkenburg H., Cats A. The risk of developing ankylosing spondylitis in HLA-B27 positive individuals: a family and population study. Br J Rheumatol. 1983 Nov;22(4 Suppl 2):18–19. doi: 10.1093/rheumatology/xxii.suppl_2.18. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES