Skip to main content
Genetics logoLink to Genetics
. 2003 Feb;163(2):557–570. doi: 10.1093/genetics/163.2.557

Genetic loci modulating fitness and life span in Caenorhabditis elegans: categorical trait interval mapping in CL2a x Bergerac-BO recombinant-inbred worms.

Srinivas Ayyadevara 1, Rajani Ayyadevara 1, Anthony Vertino 1, Andrzej Galecki 1, John J Thaden 1, Robert J Shmookler Reis 1
PMCID: PMC1462449  PMID: 12618395

Abstract

Quantitative trait loci (QTL) can implicate an unbiased sampling of genes underlying a complex, polygenic phenotype. QTL affecting longevity in Caenorhabditis elegans were mapped using a CL2a x Bergerac-BO recombinant-inbred population. Genotypes were compared at 30 transposon-specific markers for two paired sample sets totaling 171 young controls and 172 longevity-selected worms (the last-surviving 1%) from a synchronously aged population. A third sample set, totaling 161 worms from an independent culture, was analyzed for confirmation of loci. At least six highly significant QTL affecting life span were detected both by single-marker (chi(2)) analysis and by two interval-mapping procedures--one intended for nonparametric traits and another developed specifically for mapping of categorical traits. These life-span QTL were located on chromosomes I (near the hP4 locus), III (near stP127), IV (near stP44), V (a cluster of three peaks, near stP192, stP23, and stP6), and X (two distinct peaks, near stP129 and stP2). Epistatic effects on longevity were also analyzed by Fisher's exact test, which indicated a significant life-span interaction between markers on chromosomes V (stP128) and III (stP127). Several further interactions were significant in the initial unselected population; two of these, between distal loci on chromosome V, were completely eliminated in the long-lived subset. Allelic longevity effects for two QTL, on chromosomes IV and V, were confirmed in backcrossed congenic lines and were highly significant in two very different environments-growth on solid agar medium and in liquid suspension culture.

Full Text

The Full Text of this article is available as a PDF (463.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayyadevara S., Ayyadevara R., Hou S., Thaden J. J., Shmookler Reis R. J. Genetic mapping of quantitative trait loci governing longevity of Caenorhabditis elegans in recombinant-inbred progeny of a Bergerac-BO x RC301 interstrain cross. Genetics. 2001 Feb;157(2):655–666. doi: 10.1093/genetics/157.2.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ayyadevara S., Thaden J. J., Shmookler Reis R. J. Anchor polymerase chain reaction display: a high-throughput method to resolve, score, and isolate dimorphic genetic markers based on interspersed repetitive DNA elements. Anal Biochem. 2000 Aug 15;284(1):19–28. doi: 10.1006/abio.2000.4636. [DOI] [PubMed] [Google Scholar]
  3. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998 Dec 11;282(5396):2012–2018. doi: 10.1126/science.282.5396.2012. [DOI] [PubMed] [Google Scholar]
  5. Carey G., Williamson J. Linkage analysis of quantitative traits: increased power by using selected samples. Am J Hum Genet. 1991 Oct;49(4):786–796. [PMC free article] [PubMed] [Google Scholar]
  6. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clancy D. J., Gems D., Harshman L. G., Oldham S., Stocker H., Hafen E., Leevers S. J., Partridge L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science. 2001 Apr 6;292(5514):104–106. doi: 10.1126/science.1057991. [DOI] [PubMed] [Google Scholar]
  8. Cypser J. R., Johnson T. E. The spe-10 mutant has longer life and increased stress resistance. Neurobiol Aging. 1999 Sep-Oct;20(5):503–512. doi: 10.1016/s0197-4580(99)00085-8. [DOI] [PubMed] [Google Scholar]
  9. Dixon L. K. Use of recombinant inbred strains to map genes of aging. Genetica. 1993;91(1-3):151–165. doi: 10.1007/BF01435995. [DOI] [PubMed] [Google Scholar]
  10. Dreyfus D. H., Emmons S. W. A transposon-related palindromic repetitive sequence from C. elegans. Nucleic Acids Res. 1991 Apr 25;19(8):1871–1877. doi: 10.1093/nar/19.8.1871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Duhon S. A., Murakami S., Johnson T. E. Direct isolation of longevity mutants in the nematode Caenorhabditis elegans. Dev Genet. 1996;18(2):144–153. doi: 10.1002/(SICI)1520-6408(1996)18:2<144::AID-DVG7>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  12. Ebert R. H., 2nd, Cherkasova V. A., Dennis R. A., Wu J. H., Ruggles S., Perrin T. E., Shmookler Reis R. J. Longevity-determining genes in Caenorhabditis elegans: chromosomal mapping of multiple noninteractive loci. Genetics. 1993 Dec;135(4):1003–1010. doi: 10.1093/genetics/135.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ebert R. H., 2nd, Shammas M. A., Sohal B. H., Sohal R. S., Egilmez N. K., Ruggles S., Shmookler Reis R. J. Defining genes that govern longevity in Caenorhabditis elegans. Dev Genet. 1996;18(2):131–143. doi: 10.1002/(SICI)1520-6408(1996)18:2<131::AID-DVG6>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  14. Egilmez N. K., Ebert R. H., 2nd, Shmookler Reis R. J. Strain evolution in Caenorhabditis elegans: transposable elements as markers of interstrain evolutionary history. J Mol Evol. 1995 Apr;40(4):372–381. doi: 10.1007/BF00164023. [DOI] [PubMed] [Google Scholar]
  15. Ewbank J. J., Barnes T. M., Lakowski B., Lussier M., Bussey H., Hekimi S. Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science. 1997 Feb 14;275(5302):980–983. doi: 10.1126/science.275.5302.980. [DOI] [PubMed] [Google Scholar]
  16. Fabian T. J., Johnson T. E. Production of age-synchronous mass cultures of Caenorhabditis elegans. J Gerontol. 1994 Jul;49(4):B145–B156. doi: 10.1093/geronj/49.4.b145. [DOI] [PubMed] [Google Scholar]
  17. Fabrizio P., Pozza F., Pletcher S. D., Gendron C. M., Longo V. D. Regulation of longevity and stress resistance by Sch9 in yeast. Science. 2001 Apr 5;292(5515):288–290. doi: 10.1126/science.1059497. [DOI] [PubMed] [Google Scholar]
  18. Felkai S., Ewbank J. J., Lemieux J., Labbé J. C., Brown G. G., Hekimi S. CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J. 1999 Apr 1;18(7):1783–1792. doi: 10.1093/emboj/18.7.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gems D., Sutton A. J., Sundermeyer M. L., Albert P. S., King K. V., Edgley M. L., Larsen P. L., Riddle D. L. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics. 1998 Sep;150(1):129–155. doi: 10.1093/genetics/150.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Johnson T. E., Wood W. B. Genetic analysis of life-span in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6603–6607. doi: 10.1073/pnas.79.21.6603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993 Dec 2;366(6454):461–464. doi: 10.1038/366461a0. [DOI] [PubMed] [Google Scholar]
  22. Kirchman P. A., Kim S., Lai C. Y., Jazwinski S. M. Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics. 1999 May;152(1):179–190. doi: 10.1093/genetics/152.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Klass M. R. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev. 1983 Jul-Aug;22(3-4):279–286. doi: 10.1016/0047-6374(83)90082-9. [DOI] [PubMed] [Google Scholar]
  24. Kruglyak L., Lander E. S. A nonparametric approach for mapping quantitative trait loci. Genetics. 1995 Mar;139(3):1421–1428. doi: 10.1093/genetics/139.3.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lakowski B., Hekimi S. Determination of life-span in Caenorhabditis elegans by four clock genes. Science. 1996 May 17;272(5264):1010–1013. doi: 10.1126/science.272.5264.1010. [DOI] [PubMed] [Google Scholar]
  26. Lakowski B., Hekimi S. The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13091–13096. doi: 10.1073/pnas.95.22.13091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Leips J., Mackay T. F. Quantitative trait loci for life span in Drosophila melanogaster: interactions with genetic background and larval density. Genetics. 2000 Aug;155(4):1773–1788. doi: 10.1093/genetics/155.4.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lin K., Dorman J. B., Rodan A., Kenyon C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997 Nov 14;278(5341):1319–1322. doi: 10.1126/science.278.5341.1319. [DOI] [PubMed] [Google Scholar]
  30. Lin S. J., Defossez P. A., Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000 Sep 22;289(5487):2126–2128. doi: 10.1126/science.289.5487.2126. [DOI] [PubMed] [Google Scholar]
  31. Lin Y. J., Seroude L., Benzer S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science. 1998 Oct 30;282(5390):943–946. doi: 10.1126/science.282.5390.943. [DOI] [PubMed] [Google Scholar]
  32. Lithgow G. J. Stress response and aging in Caenorhabditis elegans. Results Probl Cell Differ. 2000;29:131–148. doi: 10.1007/978-3-540-48003-7_7. [DOI] [PubMed] [Google Scholar]
  33. Luckinbill L. S., Riha V., Rhine S., Grudzien T. A. The role of glucose-6-phosphate dehydrogenase in the evolution of longevity in Drosophila melanogaster. Heredity (Edinb) 1990 Aug;65(Pt 1):29–38. doi: 10.1038/hdy.1990.66. [DOI] [PubMed] [Google Scholar]
  34. Lyttle T. W. Segregation distorters. Annu Rev Genet. 1991;25:511–557. doi: 10.1146/annurev.ge.25.120191.002455. [DOI] [PubMed] [Google Scholar]
  35. Mitchell D. H., Stiles J. W., Santelli J., Sanadi D. R. Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. J Gerontol. 1979 Jan;34(1):28–36. doi: 10.1093/geronj/34.1.28. [DOI] [PubMed] [Google Scholar]
  36. Moerman D. G., Waterston R. H. Spontaneous unstable unc-22 IV mutations in C. elegans var. Bergerac. Genetics. 1984 Dec;108(4):859–877. doi: 10.1093/genetics/108.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Morris J. Z., Tissenbaum H. A., Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature. 1996 Aug 8;382(6591):536–539. doi: 10.1038/382536a0. [DOI] [PubMed] [Google Scholar]
  38. Ogg S., Paradis S., Gottlieb S., Patterson G. I., Lee L., Tissenbaum H. A., Ruvkun G. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 1997 Oct 30;389(6654):994–999. doi: 10.1038/40194. [DOI] [PubMed] [Google Scholar]
  39. Ogg S., Ruvkun G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell. 1998 Dec;2(6):887–893. doi: 10.1016/s1097-2765(00)80303-2. [DOI] [PubMed] [Google Scholar]
  40. Paradis S., Ailion M., Toker A., Thomas J. H., Ruvkun G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev. 1999 Jun 1;13(11):1438–1452. doi: 10.1101/gad.13.11.1438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pasyukova E. G., Vieira C., Mackay T. F. Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster. Genetics. 2000 Nov;156(3):1129–1146. doi: 10.1093/genetics/156.3.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rogina B., Reenan R. A., Nilsen S. P., Helfand S. L. Extended life-span conferred by cotransporter gene mutations in Drosophila. Science. 2000 Dec 15;290(5499):2137–2140. doi: 10.1126/science.290.5499.2137. [DOI] [PubMed] [Google Scholar]
  43. Shook D. R., Brooks A., Johnson T. E. Mapping quantitative trait loci affecting life history traits in the nematode Caenorhabditis elegans. Genetics. 1996 Mar;142(3):801–817. doi: 10.1093/genetics/142.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Shook D. R., Johnson T. E. Quantitative trait loci affecting survival and fertility-related traits in Caenorhabditis elegans show genotype-environment interactions, pleiotropy and epistasis. Genetics. 1999 Nov;153(3):1233–1243. doi: 10.1093/genetics/153.3.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tissenbaum H. A., Ruvkun G. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics. 1998 Feb;148(2):703–717. doi: 10.1093/genetics/148.2.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vajo Z., King L. M., Jonassen T., Wilkin D. J., Ho N., Munnich A., Clarke C. F., Francomano C. A. Conservation of the Caenorhabditis elegans timing gene clk-1 from yeast to human: a gene required for ubiquinone biosynthesis with potential implications for aging. Mamm Genome. 1999 Oct;10(10):1000–1004. doi: 10.1007/s003359901147. [DOI] [PubMed] [Google Scholar]
  47. Vieira C., Pasyukova E. G., Zeng Z. B., Hackett J. B., Lyman R. F., Mackay T. F. Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics. 2000 Jan;154(1):213–227. doi: 10.1093/genetics/154.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Williams B. D., Schrank B., Huynh C., Shownkeen R., Waterston R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics. 1992 Jul;131(3):609–624. doi: 10.1093/genetics/131.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wolkow C. A., Kimura K. D., Lee M. S., Ruvkun G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science. 2000 Oct 6;290(5489):147–150. doi: 10.1126/science.290.5489.147. [DOI] [PubMed] [Google Scholar]
  50. Xu Y., Zhu L., Xiao J., Huang N., McCouch S. R. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet. 1997 Feb 20;253(5):535–545. doi: 10.1007/s004380050355. [DOI] [PubMed] [Google Scholar]
  51. Yang Y., Wilson D. L. Characterization of a life-extending mutation in age-2, a new aging gene in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci. 1999 Apr;54(4):B137–B142. doi: 10.1093/gerona/54.4.b137. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES