Skip to main content
Genetics logoLink to Genetics
. 2001 Apr;157(4):1749–1757. doi: 10.1093/genetics/157.4.1749

High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice.

Z Cheng 1, G G Presting 1, C R Buell 1, R A Wing 1, J Jiang 1
PMCID: PMC1461616  PMID: 11290728

Abstract

Large-scale physical mapping has been a major challenge for plant geneticists due to the lack of techniques that are widely affordable and can be applied to different species. Here we present a physical map of rice chromosome 10 developed by fluorescence in situ hybridization (FISH) mapping of bacterial artificial chromosome (BAC) clones on meiotic pachytene chromosomes. This physical map is fully integrated with a genetic linkage map of rice chromosome 10 because each BAC clone is anchored by a genetically mapped restriction fragment length polymorphism marker. The pachytene chromosome-based FISH mapping shows a superior resolving power compared to the somatic metaphase chromosome-based methods. The telomere-centromere orientation of DNA clones separated by 40 kb can be resolved on early pachytene chromosomes. Genetic recombination is generally evenly distributed along rice chromosome 10. However, the highly heterochromatic short arm shows a lower recombination frequency than the largely euchromatic long arm. Suppression of recombination was found in the centromeric region, but the affected region is far smaller than those reported in wheat and barley. Our FISH mapping effort also revealed the precise genetic position of the centromere on chromosome 10.

Full Text

The Full Text of this article is available as a PDF (705.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Causse M. A., Fulton T. M., Cho Y. G., Ahn S. N., Chunwongse J., Wu K., Xiao J., Yu Z., Ronald P. C., Harrington S. E. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics. 1994 Dec;138(4):1251–1274. doi: 10.1093/genetics/138.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cheng Z. K., Yu H. X., Yan C. J., Zhu L. H., Gu M. H. Cytological identification of an isotetrasomic in rice and its application to centromere mapping. Cell Res. 1997 Jun;7(1):31–38. doi: 10.1038/cr.1997.4. [DOI] [PubMed] [Google Scholar]
  3. Dong F., Miller J. T., Jackson S. A., Wang G. L., Ronald P. C., Jiang J. Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8135–8140. doi: 10.1073/pnas.95.14.8135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Faris J. D., Haen K. M., Gill B. S. Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics. 2000 Feb;154(2):823–835. doi: 10.1093/genetics/154.2.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fransz P. F., Alonso-Blanco C., Liharska T. B., Peeters A. J., Zabel P., de Jong J. H. High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J. 1996 Mar;9(3):421–430. doi: 10.1046/j.1365-313x.1996.09030421.x. [DOI] [PubMed] [Google Scholar]
  6. Fransz P. F., Armstrong S., de Jong J. H., Parnell L. D., van Drunen C., Dean C., Zabel P., Bisseling T., Jones G. H. Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell. 2000 Feb 4;100(3):367–376. doi: 10.1016/s0092-8674(00)80672-8. [DOI] [PubMed] [Google Scholar]
  7. Fransz P., Armstrong S., Alonso-Blanco C., Fischer T. C., Torres-Ruiz R. A., Jones G. Cytogenetics for the model system Arabidopsis thaliana. Plant J. 1998 Mar;13(6):867–876. doi: 10.1046/j.1365-313x.1998.00086.x. [DOI] [PubMed] [Google Scholar]
  8. Goff S. A. Rice as a model for cereal genomics. Curr Opin Plant Biol. 1999 Apr;2(2):86–89. doi: 10.1016/S1369-5266(99)80018-1. [DOI] [PubMed] [Google Scholar]
  9. Hans de Jong J, Fransz P, Zabel P. High resolution FISH in plants - techniques and applications. Trends Plant Sci. 1999 Jul;4(7):258–263. doi: 10.1016/s1360-1385(99)01436-3. [DOI] [PubMed] [Google Scholar]
  10. Harushima Y., Yano M., Shomura A., Sato M., Shimano T., Kuboki Y., Yamamoto T., Lin S. Y., Antonio B. A., Parco A. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics. 1998 Jan;148(1):479–494. doi: 10.1093/genetics/148.1.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hattori M., Fujiyama A., Taylor T. D., Watanabe H., Yada T., Park H. S., Toyoda A., Ishii K., Totoki Y., Choi D. K. The DNA sequence of human chromosome 21. Nature. 2000 May 18;405(6784):311–319. doi: 10.1038/35012518. [DOI] [PubMed] [Google Scholar]
  12. Jackson S. A., Cheng Z., Wang M. L., Goodman H. M., Jiang J. Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics. 2000 Oct;156(2):833–838. doi: 10.1093/genetics/156.2.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jackson S. A., Dong F., Jiang J. Digital mapping of bacterial artificial chromosomes by fluorescence in situ hybridization. Plant J. 1999 Mar;17(5):581–587. doi: 10.1046/j.1365-313x.1999.00398.x. [DOI] [PubMed] [Google Scholar]
  14. Jackson S. A., Wang M. L., Goodman H. M., Jiang J. Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome. 1998 Aug;41(4):566–572. [PubMed] [Google Scholar]
  15. Jiang J., Gill B. S. Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome. 1994 Oct;37(5):717–725. doi: 10.1139/g94-102. [DOI] [PubMed] [Google Scholar]
  16. Jiang J., Gill B. S., Wang G. L., Ronald P. C., Ward D. C. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4487–4491. doi: 10.1073/pnas.92.10.4487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jiang J., Hulbert S. H., Gill B. S., Ward D. C. Interphase fluorescence in situ hybridization mapping: a physical mapping strategy for plant species with large complex genomes. Mol Gen Genet. 1996 Oct 16;252(5):497–502. doi: 10.1007/BF02172395. [DOI] [PubMed] [Google Scholar]
  18. Kurata N., Umehara Y., Tanoue H., Sasaki T. Physical mapping of the rice genome with YAC clones. Plant Mol Biol. 1997 Sep;35(1-2):101–113. [PubMed] [Google Scholar]
  19. Künzel G., Korzun L., Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics. 2000 Jan;154(1):397–412. doi: 10.1093/genetics/154.1.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mao L., Wood T. C., Yu Y., Budiman M. A., Tomkins J., Woo S., Sasinowski M., Presting G., Frisch D., Goff S. Rice transposable elements: a survey of 73,000 sequence-tagged-connectors. Genome Res. 2000 Jul;10(7):982–990. doi: 10.1101/gr.10.7.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mayer K., Schüller C., Wambutt R., Murphy G., Volckaert G., Pohl T., Düsterhöft A., Stiekema W., Entian K. D., Terryn N. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):769–777. doi: 10.1038/47134. [DOI] [PubMed] [Google Scholar]
  22. Mozo T., Dewar K., Dunn P., Ecker J. R., Fischer S., Kloska S., Lehrach H., Marra M., Martienssen R., Meier-Ewert S. A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat Genet. 1999 Jul;22(3):271–275. doi: 10.1038/10334. [DOI] [PubMed] [Google Scholar]
  23. Peterson D. G., Lapitan N. L., Stack S. M. Localization of single- and low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH). Genetics. 1999 May;152(1):427–439. doi: 10.1093/genetics/152.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Richards E. J., Ausubel F. M. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell. 1988 Apr 8;53(1):127–136. doi: 10.1016/0092-8674(88)90494-1. [DOI] [PubMed] [Google Scholar]
  25. Riera-Lizarazu O., Vales M. I., Ananiev E. V., Rines H. W., Phillips R. L. Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics. 2000 Sep;156(1):327–339. doi: 10.1093/genetics/156.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sasaki T., Burr B. International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr Opin Plant Biol. 2000 Apr;3(2):138–141. doi: 10.1016/s1369-5266(99)00047-3. [DOI] [PubMed] [Google Scholar]
  27. Schmidt R., West J., Love K., Lenehan Z., Lister C., Thompson H., Bouchez D., Dean C. Physical map and organization of Arabidopsis thaliana chromosome 4. Science. 1995 Oct 20;270(5235):480–483. doi: 10.1126/science.270.5235.480. [DOI] [PubMed] [Google Scholar]
  28. Sherman J. D., Stack S. M. Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics. 1995 Oct;141(2):683–708. doi: 10.1093/genetics/141.2.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Singh K., Ishii T., Parco A., Huang N., Brar D. S., Khush G. S. Centromere mapping and orientation of the molecular linkage map of rice (Oryza sativa L.). Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6163–6168. doi: 10.1073/pnas.93.12.6163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Song J., Dong F., Jiang J. Construction of a bacterial artificial chromosome (BAC) library for potato molecular cytogenetics research. Genome. 2000 Feb;43(1):199–204. [PubMed] [Google Scholar]
  31. Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang S., Wang J., Jiang J., Zhang Q. Mapping of centromeric regions on the molecular linkage map of rice (Oryza sativa L.) using centromere-associated sequences. Mol Gen Genet. 2000 Feb;263(1):165–172. doi: 10.1007/s004380050044. [DOI] [PubMed] [Google Scholar]
  33. Weber D., Helentjaris T. Mapping RFLP loci in maize using B-A translocations. Genetics. 1989 Mar;121(3):583–590. doi: 10.1093/genetics/121.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Werner J. E., Endo T. R., Gill B. S. Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11307–11311. doi: 10.1073/pnas.89.23.11307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wu K. S., Tanksley S. D. Genetic and physical mapping of telomeres and macrosatellites of rice. Plant Mol Biol. 1993 Aug;22(5):861–872. doi: 10.1007/BF00027371. [DOI] [PubMed] [Google Scholar]
  36. Wu T., Wang Y., Wu R. Transcribed repetitive DNA sequences in telomeric regions of rice (Oryza sativa). Plant Mol Biol. 1994 Oct;26(1):363–375. doi: 10.1007/BF00039546. [DOI] [PubMed] [Google Scholar]
  37. Xu J., Earle E. D. High resolution physical mapping of 45S (5.8S, 18S and 25S) rDNA gene loci in the tomato genome using a combination of karyotyping and FISH of pachytene chromosomes. Chromosoma. 1996 Jun;104(8):545–550. doi: 10.1007/BF00352294. [DOI] [PubMed] [Google Scholar]
  38. Zwick M. S., Islam-Faridi M. N., Czeschin D. G., Jr, Wing R. A., Hart G. E., Stelly D. M., Price H. J. Physical mapping of the liguleless linkage group in Sorghum bicolor using rice RFLP-selected sorghum BACs. Genetics. 1998 Apr;148(4):1983–1992. doi: 10.1093/genetics/148.4.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES