Skip to main content
RNA logoLink to RNA
. 1998 Nov;4(11):1407–1417. doi: 10.1017/s1355838298981146

A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli.

S Raychaudhuri 1, J Conrad 1, B G Hall 1, J Ofengand 1
PMCID: PMC1369713  PMID: 9814761

Abstract

Escherichia coli rRNA contains 10 pseudouridines of unknown function. They are made by synthases, each of which is specific for one or more pseudouridines. Here we show that the sfhB (yfil) ORF of E. coli is a pseudouridine synthase gene by cloning, protein overexpression, and reaction in vitro with rRNA transcripts. Gene disruption by miniTn10(cam) insertion revealed that this synthase gene, here renamed rluD, codes for a synthase which is solely responsible in vivo for synthesis of the three pseudouridines clustered in a stem-loop at positions 1911, 1915, and 1917 of 23S RNA. The absence of RluD results in severe growth inhibition. Both the absence of pseudouridine and the growth defect could be reversed by insertion of a plasmid carrying the rluD gene into the mutant cell, clearly linking both effects to the absence of RIuD. This is the first report of a major physiological defect due to the deletion of any pseudouridine synthase. Growth inhibition may be due to the lack of one or more of the 23S RNA pseudouridines made by this synthase since pseudouridines 1915 and 1917 are universally conserved and are located in proximity to the decoding center of the ribosome where they could be involved in modulating codon recognition.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakin A. V., Ofengand J. Mapping of pseudouridine residues in RNA to nucleotide resolution. Methods Mol Biol. 1998;77:297–309. doi: 10.1385/0-89603-397-X:297. [DOI] [PubMed] [Google Scholar]
  2. Bakin A., Kowalak J. A., McCloskey J. A., Ofengand J. The single pseudouridine residue in Escherichia coli 16S RNA is located at position 516. Nucleic Acids Res. 1994 Sep 11;22(18):3681–3684. doi: 10.1093/nar/22.18.3681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bakin A., Lane B. G., Ofengand J. Clustering of pseudouridine residues around the peptidyltransferase center of yeast cytoplasmic and mitochondrial ribosomes. Biochemistry. 1994 Nov 15;33(45):13475–13483. doi: 10.1021/bi00249a036. [DOI] [PubMed] [Google Scholar]
  4. Bakin A., Ofengand J. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry. 1993 Sep 21;32(37):9754–9762. doi: 10.1021/bi00088a030. [DOI] [PubMed] [Google Scholar]
  5. Blattner F. R., Plunkett G., 3rd, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1462. doi: 10.1126/science.277.5331.1453. [DOI] [PubMed] [Google Scholar]
  6. COHN W. E. Pseudouridine, a carbon-carbon linked ribonucleoside in ribonucleic acids: isolation, structure, and chemical characteristics. J Biol Chem. 1960 May;235:1488–1498. [PubMed] [Google Scholar]
  7. Conrad J., Sun D., Englund N., Ofengand J. The rluC gene of Escherichia coli codes for a pseudouridine synthase that is solely responsible for synthesis of pseudouridine at positions 955, 2504, and 2580 in 23 S ribosomal RNA. J Biol Chem. 1998 Jul 17;273(29):18562–18566. doi: 10.1074/jbc.273.29.18562. [DOI] [PubMed] [Google Scholar]
  8. Grosjean H., Szweykowska-Kulinska Z., Motorin Y., Fasiolo F., Simos G. Intron-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: a review. Biochimie. 1997 May;79(5):293–302. doi: 10.1016/s0300-9084(97)83517-1. [DOI] [PubMed] [Google Scholar]
  9. Gu J., Chen Y., Reddy R. Small RNA database. Nucleic Acids Res. 1998 Jan 1;26(1):160–162. doi: 10.1093/nar/26.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gustafsson C., Reid R., Greene P. J., Santi D. V. Identification of new RNA modifying enzymes by iterative genome search using known modifying enzymes as probes. Nucleic Acids Res. 1996 Oct 1;24(19):3756–3762. doi: 10.1093/nar/24.19.3756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gutell R. R., Gray M. W., Schnare M. N. A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. Nucleic Acids Res. 1993 Jul 1;21(13):3055–3074. doi: 10.1093/nar/21.13.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hall B. G. Adaptive mutagenesis at ebgR is regulated by PhoPQ. J Bacteriol. 1998 Jun;180(11):2862–2865. doi: 10.1128/jb.180.11.2862-2865.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heiss N. S., Knight S. W., Vulliamy T. J., Klauck S. M., Wiemann S., Mason P. J., Poustka A., Dokal I. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 1998 May;19(1):32–38. doi: 10.1038/ng0598-32. [DOI] [PubMed] [Google Scholar]
  14. Ho N. W., Gilham P. T. Reaction of pseudouridine and inosine with N-cyclohexyl-N'-beta-(4-methylmorpholinium)ethylcarbodiimide. Biochemistry. 1971 Sep 28;10(20):3651–3657. [PubMed] [Google Scholar]
  15. Jensen K. F. The Escherichia coli K-12 "wild types" W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol. 1993 Jun;175(11):3401–3407. doi: 10.1128/jb.175.11.3401-3407.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kammen H. O., Marvel C. C., Hardy L., Penhoet E. E. Purification, structure, and properties of Escherichia coli tRNA pseudouridine synthase I. J Biol Chem. 1988 Feb 15;263(5):2255–2263. [PubMed] [Google Scholar]
  17. King T. C., Schlessinger D. S1 nuclease mapping analysis of ribosomal RNA processing in wild type and processing deficient Escherichia coli. J Biol Chem. 1983 Oct 10;258(19):12034–12042. [PubMed] [Google Scholar]
  18. Koonin E. V. Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res. 1996 Jun 15;24(12):2411–2415. doi: 10.1093/nar/24.12.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kowalak J. A., Bruenger E., Hashizume T., Peltier J. M., Ofengand J., McCloskey J. A. Structural characterization of U*-1915 in domain IV from Escherichia coli 23S ribosomal RNA as 3-methylpseudouridine. Nucleic Acids Res. 1996 Feb 15;24(4):688–693. doi: 10.1093/nar/24.4.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lecointe F., Simos G., Sauer A., Hurt E. C., Motorin Y., Grosjean H. Characterization of yeast protein Deg1 as pseudouridine synthase (Pus3) catalyzing the formation of psi 38 and psi 39 in tRNA anticodon loop. J Biol Chem. 1998 Jan 16;273(3):1316–1323. doi: 10.1074/jbc.273.3.1316. [DOI] [PubMed] [Google Scholar]
  21. Maden B. E. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 1990;39:241–303. doi: 10.1016/s0079-6603(08)60629-7. [DOI] [PubMed] [Google Scholar]
  22. Mitchell P., Osswald M., Brimacombe R. Identification of intermolecular RNA cross-links at the subunit interface of the Escherichia coli ribosome. Biochemistry. 1992 Mar 24;31(11):3004–3011. doi: 10.1021/bi00126a023. [DOI] [PubMed] [Google Scholar]
  23. Myler P. J., Venkataraman G. M., Lodes M. J., Stuart K. D. A frequently amplified region in Leishmania contains a gene conserved in prokaryotes and eukaryotes. Gene. 1994 Oct 21;148(2):187–193. doi: 10.1016/0378-1119(94)90688-2. [DOI] [PubMed] [Google Scholar]
  24. Nurse K., Wrzesinski J., Bakin A., Lane B. G., Ofengand J. Purification, cloning, and properties of the tRNA psi 55 synthase from Escherichia coli. RNA. 1995 Mar;1(1):102–112. [PMC free article] [PubMed] [Google Scholar]
  25. O'Connor M., Dahlberg A. E. The involvement of two distinct regions of 23 S ribosomal RNA in tRNA selection. J Mol Biol. 1995 Dec 15;254(5):838–847. doi: 10.1006/jmbi.1995.0659. [DOI] [PubMed] [Google Scholar]
  26. Ofengand J., Bakin A. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J Mol Biol. 1997 Feb 21;266(2):246–268. doi: 10.1006/jmbi.1996.0737. [DOI] [PubMed] [Google Scholar]
  27. Persson B. C., Gustafsson C., Berg D. E., Björk G. R. The gene for a tRNA modifying enzyme, m5U54-methyltransferase, is essential for viability in Escherichia coli. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3995–3998. doi: 10.1073/pnas.89.9.3995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reuven N. B., Deutscher M. P. Multiple exoribonucleases are required for the 3' processing of Escherichia coli tRNA precursors in vivo. FASEB J. 1993 Jan;7(1):143–148. doi: 10.1096/fasebj.7.1.8422961. [DOI] [PubMed] [Google Scholar]
  29. Sprinzl M., Horn C., Brown M., Ioudovitch A., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1998 Jan 1;26(1):148–153. doi: 10.1093/nar/26.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tsui H. C., Arps P. J., Connolly D. M., Winkler M. E. Absence of hisT-mediated tRNA pseudouridylation results in a uracil requirement that interferes with Escherichia coli K-12 cell division. J Bacteriol. 1991 Nov;173(22):7395–7400. doi: 10.1128/jb.173.22.7395-7400.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weitzmann C. J., Cunningham P. R., Ofengand J. Cloning, in vitro transcription, and biological activity of Escherichia coli 23S ribosomal RNA. Nucleic Acids Res. 1990 Jun 25;18(12):3515–3520. doi: 10.1093/nar/18.12.3515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wrzesinski J., Bakin A., Nurse K., Lane B. G., Ofengand J. Purification, cloning, and properties of the 16S RNA pseudouridine 516 synthase from Escherichia coli. Biochemistry. 1995 Jul 11;34(27):8904–8913. doi: 10.1021/bi00027a043. [DOI] [PubMed] [Google Scholar]
  33. Wrzesinski J., Nurse K., Bakin A., Lane B. G., Ofengand J. A dual-specificity pseudouridine synthase: an Escherichia coli synthase purified and cloned on the basis of its specificity for psi 746 in 23S RNA is also specific for psi 32 in tRNA(phe). RNA. 1995 Jun;1(4):437–448. [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES