Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Aug 15;262(1):63–68. doi: 10.1042/bj2620063

The inactivation of the cysteinyl exopeptidases cathepsin H and C by affinity-labelling reagents.

H Angliker 1, P Wikstrom 1, H Kirschke 1, E Shaw 1
PMCID: PMC1133229  PMID: 2818577

Abstract

An attempt has been made to extend to the cysteinyl exopeptidases cathepsins H and C affinity-labelling approaches shown to be effective with cysteinyl endopeptidases such as cathepsins B and L and the calcium-activated proteinase. This involved the preparation of amino acid and dipeptide derivatives with unblocked N-termini to satisfy the aminopeptidase and dipeptidyl aminopeptidase characteristics of cathepsins H and C respectively. For covalent reactivity, the possibilities examined included diazomethanes (-CHN2), fluoromethanes (-CH2F) and dimethylsulphonium salt [-CH2S+(CH3)2]. A dipeptidylfluoromethane with a free amino group could not be prepared, perhaps due to inherent instability. Cathepsin H was inactivated by 1 microM-H2N-Phe-CH2F (the 'H2N' indicates a free unblocked amino group) (k2 = 1878 M-1.s-1); this reagent was without effect on cathepsins C and B, even at 100-fold this concentration. Analogous selectivity was shown by H2N-Ser(OBzl)-CHN2 and H2N-Phe-CH2S+(CH3)2, members of other classes of covalently binding reagents. For cathepsin C the dipeptide derivatives H2N-Gly-Phe-CHN2 and H2N-Phe-Ala-CH2S+(CH3)2 caused rapid inactivation near 10(-7) M. Higher concentrations inactivated cathepsins H and B, but the rates were slower by two to three orders of magnitude than for cathepsin C.

Full text

PDF
63

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett A. J., Kembhavi A. A., Brown M. A., Kirschke H., Knight C. G., Tamai M., Hanada K. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J. 1982 Jan 1;201(1):189–198. doi: 10.1042/bj2010189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrett A. J., Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt 100):535–561. doi: 10.1016/s0076-6879(81)80043-2. [DOI] [PubMed] [Google Scholar]
  3. Coggins J. R., Kray W., Shaw E. Affinity labelling of proteinases with tryptic specificity by peptides with C-terminal lysine chloromethyl ketone. Biochem J. 1974 Mar;137(3):579–585. doi: 10.1042/bj1370579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crawford C., Mason R. W., Wikstrom P., Shaw E. The design of peptidyldiazomethane inhibitors to distinguish between the cysteine proteinases calpain II, cathepsin L and cathepsin B. Biochem J. 1988 Aug 1;253(3):751–758. doi: 10.1042/bj2530751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evans B., Shaw E. Inactivation of cathepsin B by active site-directed disulfide exchange. Application in covalent affinity chromatography. J Biol Chem. 1983 Sep 10;258(17):10227–10232. [PubMed] [Google Scholar]
  6. Green G. D., Shaw E. Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases. J Biol Chem. 1981 Feb 25;256(4):1923–1928. [PubMed] [Google Scholar]
  7. Kirschke H., Langner J., Riemann S., Wiederanders B., Ansorge S., Bohley P. Lysosomal cysteine proteinases. Ciba Found Symp. 1979;(75):15–35. doi: 10.1002/9780470720585.ch2. [DOI] [PubMed] [Google Scholar]
  8. Kirschke H., Langner J., Wiederanders B., Ansorge S., Bohley P., Broghammer U. Intrazellulärer Proteinabbau. VII. Kathepsin L und H: Zwei neue Proteinasen aus Rattenleberlysosomen. Acta Biol Med Ger. 1976;35(3-4):285–299. [PubMed] [Google Scholar]
  9. Kirschke H., Langner J., Wiederanders B., Ansorge S., Bohley P. Cathepsin L. A new proteinase from rat-liver lysosomes. Eur J Biochem. 1977 Apr 1;74(2):293–301. doi: 10.1111/j.1432-1033.1977.tb11393.x. [DOI] [PubMed] [Google Scholar]
  10. Kirschke H., Langner J., Wiederanders B., Ansorge S., Bohley P., Hanson H. Cathepsin H: an endoaminopeptidase from rat liver lysosomes. Acta Biol Med Ger. 1977;36(2):185–199. [PubMed] [Google Scholar]
  11. Kirschke H., Wikstrom P., Shaw E. Active center differences between cathepsins L and B: the S1 binding region. FEBS Lett. 1988 Feb 8;228(1):128–130. doi: 10.1016/0014-5793(88)80600-8. [DOI] [PubMed] [Google Scholar]
  12. Mason R. W., Wilcox D., Wikstrom P., Shaw E. N. The identification of active forms of cysteine proteinases in Kirsten-virus-transformed mouse fibroblasts by use of a specific radiolabelled inhibitor. Biochem J. 1989 Jan 1;257(1):125–129. doi: 10.1042/bj2570125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McDonald J. K., Zeitman B. B., Reilly T. J., Ellis S. New observations on the substrate specificity of cathepsin C (dipeptidyl aminopeptidase I). Including the degradation of beta-corticotropin and other peptide hormones. J Biol Chem. 1969 May 25;244(10):2693–2709. [PubMed] [Google Scholar]
  14. Rasnick D. Synthesis of peptide fluoromethyl ketones and the inhibition of human cathepsin B. Anal Biochem. 1985 Sep;149(2):461–465. doi: 10.1016/0003-2697(85)90598-6. [DOI] [PubMed] [Google Scholar]
  15. Rauber P., Angliker H., Walker B., Shaw E. The synthesis of peptidylfluoromethanes and their properties as inhibitors of serine proteinases and cysteine proteinases. Biochem J. 1986 Nov 1;239(3):633–640. doi: 10.1042/bj2390633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reiss Y., Kaim D., Hershko A. Specificity of binding of NH2-terminal residue of proteins to ubiquitin-protein ligase. Use of amino acid derivatives to characterize specific binding sites. J Biol Chem. 1988 Feb 25;263(6):2693–2698. [PubMed] [Google Scholar]
  17. Sasaki T., Kikuchi T., Yumoto N., Yoshimura N., Murachi T. Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic fluorogenic substrates. J Biol Chem. 1984 Oct 25;259(20):12489–12494. [PubMed] [Google Scholar]
  18. Schwartz W. N., Barrett A. J. Human cathepsin H. Biochem J. 1980 Nov 1;191(2):487–497. doi: 10.1042/bj1910487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shaw E., Angliker H., Rauber P., Walker B., Wikstrom P. Peptidyl fluoromethyl ketones as thiol protease inhibitors. Biomed Biochim Acta. 1986;45(11-12):1397–1403. [PubMed] [Google Scholar]
  20. Shaw E. Peptidyl sulfonium salts. A new class of protease inhibitors. J Biol Chem. 1988 Feb 25;263(6):2768–2772. [PubMed] [Google Scholar]
  21. Shaw E., Wikstrom P., Ruscica J. An exploration of the primary specificity site of cathepsin B. Arch Biochem Biophys. 1983 Apr 15;222(2):424–429. doi: 10.1016/0003-9861(83)90540-4. [DOI] [PubMed] [Google Scholar]
  22. Takahashi T., Dehdarani A. H., Tang J. Porcine spleen cathepsin H hydrolyzes oligopeptides solely by aminopeptidase activity. J Biol Chem. 1988 Aug 5;263(22):10952–10957. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES