Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 10;191(2):921–931. doi: 10.1016/0042-6822(92)90267-S

The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein

Farshad Guirakhoo 1,1, Richard A Bolin 1, John T Roehrig 1
PMCID: PMC7130970  PMID: 1280384

Abstract

To study the role of the precursor to the membrane protein (prM) in flavivirus maturation, we inhibited the proteolytic processing of the Murray Valley encephalitis (MVE) virus prM to membrane protein in infected cells by adding the acidotropic agent ammonium chloride late in the virus replication cycle. Viruses purified from supernatants of ammonium chloride-treated cells contained prM protein and were unable to fuse C6/36 mosquito cells from without. When ammonium chloride was removed from the cells, both the processing of prM and the fusion activity of the purified viruses were partially restored. By using monoclonal antibodies (MAbs) specific for the envelope (E) glycoprotein of MVE virus, we found that at least three epitopes were less accessible to their corresponding antibodies in the prM-containing MVE virus particles. Amino-terminal sequencing of proteolytic fragments of the E protein which were reactive with sequence-specific peptide antisera or MAb enabled us to estimate the site of the E protein interacting with the prM to be within amino acids 200 to 327. Since prM-containing viruses were up to 400-fold more resistant to a low pH environment, we conclude that the E-prM interaction might be necessary to protect the E protein from irreversible conformational changes caused by maturation into the acidic vesicles of the exocytic pathway.

References

  1. Bray M., Lai C.-J. Dengue virus premembrane and membrane proteins elicit a protective immune response. Virology. 1991;185:505–508. doi: 10.1016/0042-6822(91)90809-p. [DOI] [PubMed] [Google Scholar]
  2. Ciampor F., Thompson C.A., Grambas S., Hay A.J. Regulation of pH by the M2 protein of influenza A viruses. Virus Res. 1992;22:247–258. doi: 10.1016/0168-1702(92)90056-f. [DOI] [PubMed] [Google Scholar]
  3. Dalgarno L., Trent D.W., Strauss J.H., Rice C.M. Partial nucleotide sequence of the Murray Valley encephalitis virus genome: Comparison of the encoded polypeptides with Yellow Fever virus structural and non-structural proteins. J. Mol. Biol. 1986;187:309–323. doi: 10.1016/0022-2836(86)90435-3. [DOI] [PubMed] [Google Scholar]
  4. Doms R.W., Helenius A., White J. Membrane fusion activity of the influenza virus hemagglutinin: The low pH-induced conformational change. J. Biol. Chem. 1985;260:2973–2981. [PubMed] [Google Scholar]
  5. Fischer J.M., Scheller R.H. Prohormone processing and the secretory pathway. J. Biol. Chem. 1988;32:16515–16518. [PubMed] [Google Scholar]
  6. Guirakhoo F., Heinz F.X., Kunz C. Epitope model of tick-borne encephalitis virus envelope glycoprotein E: Analysis of structural properties, role of carbohydrate side chain, and conformational changes occurring at acidic pH. Virology. 1989;169:90–99. doi: 10.1016/0042-6822(89)90044-5. [DOI] [PubMed] [Google Scholar]
  7. Guirakhoo F., Heinz F.X., Mandl C.W., Holzmann H., Kunz C. Fusion activity of flaviviruses: Comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J. Gen. Virol. 1991;72:1323–1329. doi: 10.1099/0022-1317-72-6-1323. [DOI] [PubMed] [Google Scholar]
  8. Hawkes R.A., Roehrig J.T., Hunt A.R., Moore G.A. Antigenic structure of the Murray Valley encephalitis virus E glycoprotein. J. Gen. Virol. 1988;69:1105–1109. doi: 10.1099/0022-1317-69-5-1105. [DOI] [PubMed] [Google Scholar]
  9. Heinz F.X., Roehrig J.T. Flaviviruses: The basis for serodiagnosis and vaccines. In: van Regenmortel M.H.V., Neurath A.R., editors. Immunochemistry of Viruses II. Elsevier; Amsterdam/New York: 1990. pp. 289–305. [Google Scholar]
  10. Hunt A.R., Short W.A., Johnson A.J., Bolin R.A., Roehrig J.T. Synthetic peptides of the E2 glycoprotein of Venezuelan equine encephalomyelitis virus. II. Antibody to the amino terminus protects animals by limiting viral replication. Virology. 1991;185:281–290. doi: 10.1016/0042-6822(91)90775-7. [DOI] [PubMed] [Google Scholar]
  11. Johnson B.J.B., Brubaker J.R., Roehrig J.T., Trent D.W. Variants of Venezuelan equine encephalitis virus that resist neutralization define a domain of the E2 glycoprotein. Virology. 1990;177:676–683. doi: 10.1016/0042-6822(90)90533-w. [DOI] [PubMed] [Google Scholar]
  12. Kielian M., Helenius A. pH-Induced alterations in the fusogenic spike protein of Semliki Forest virus. J. Cell Biol. 1985;101:2284–2291. doi: 10.1083/jcb.101.6.2284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Konishi E., Pincus S., Fonseca B.A.L., Shope R.E., Paoletti E., Mason P.W. Comparison of protective immunity elicited by recombinant vaccinia viruses that synthesize E or NS1 of Japanese encephalitis virus. Virology. 1991;185:401–410. doi: 10.1016/0042-6822(91)90788-d. [DOI] [PubMed] [Google Scholar]
  14. Laemmli L.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lobigs M., Garoff H. Fusion function of the Semliki Forest virus spike is activated by proteolytic cleavage of the envelope glycoprotein precursor p62. J. Virol. 1990;64:1233–1240. doi: 10.1128/jvi.64.3.1233-1240.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lobigs M., Wahlberg J., Garoff H. Spike protein oligomerization control of Semliki Forest virus fusion. J. Virol. 1990;64:5214–5218. doi: 10.1128/jvi.64.10.5214-5218.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mandl C.W., Guirakhoo F., Holzmann H., Heinz F.X., Kunz C. Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. J. Virol. 1989;63:564–571. doi: 10.1128/jvi.63.2.564-571.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Marsh M., Helenius A. Virus entry into animal cells. Adv. Virus Res. 1989;36:107–151. doi: 10.1016/S0065-3527(08)60583-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mason P.W., Pincus S., Fournier M.J., Mason T.L., Shope R.E., Paoletti E. Japanese encephalitis virus-vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology. 1991;180:294–305. doi: 10.1016/0042-6822(91)90034-9. [DOI] [PubMed] [Google Scholar]
  20. McCune J.M., Rabin L.B., Feinberg M.B., Lieberman M., Kosek J.C., Reyes G.R., Weissman I.L. Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell. 1988;53:55–67. doi: 10.1016/0092-8674(88)90487-4. [DOI] [PubMed] [Google Scholar]
  21. Nir S., Düzgünes N., Pedroso De Lima M.C., Hoekstra D. Fusion of enveloped viruses with cells and liposomes: Activity and inactivation. In: Weiss L., editor. Cell Biophysics. Humana Press; Clifton, NJ: 1990. [DOI] [PubMed] [Google Scholar]
  22. Nowak Th., Wengler G. Analysis of disulfides present in the membrane proteins of the West Nile flavivirus. Virology. 1987;156:127–137. doi: 10.1016/0042-6822(87)90443-0. [DOI] [PubMed] [Google Scholar]
  23. Obijeski J.F., Bishop D.H.L., Murphy F.A., Palmer E.L. Structural proteins of La Crosse virus. J. Virol. 1976;19:985–997. doi: 10.1128/jvi.19.3.985-997.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Presley J.F., Polo M.J., Johnston R.E., Brown D.T. Proteolytic processing of the Sindbis virus membrane protein precursor PE2 is nonessential for growth in vertebrate cells but is required for efficient growth in invertebrate cells. J. Virol. 1991;65:1905–1909. doi: 10.1128/jvi.65.4.1905-1909.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Randolph V.B., Winkler G., Stollar V. Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology. 1990;174:450–458. doi: 10.1016/0042-6822(90)90099-d. [DOI] [PubMed] [Google Scholar]
  26. Rice C.M., Strauss E.G., Strauss J.H. Structure of the flavivirus genome. In: Schlesinger S., Schlesinger M., editors. The Togaviridae and Flaviviridae. Plenum; New York: 1986. pp. 279–320. [Google Scholar]
  27. Roehrig J.T., Hunt A.R., Johnson A.J., Hawkes R.A. Synthetic peptides derived from the deduced amino acid sequence of the E-glycoprotein of Murray Valley encephalitis virus elicit antiviral antibody. Virology. 1989;171:49–60. doi: 10.1016/0042-6822(89)90509-6. [DOI] [PubMed] [Google Scholar]
  28. Roehrig J.R., Johnson A.J., Hunt A.R., Bolin R.A., Chu M.C. Antibodies to dengue 2 virus E-glycoprotein synthetic peptides identify antigenic conformation. Virology. 1990;177:668–675. doi: 10.1016/0042-6822(90)90532-v. [DOI] [PubMed] [Google Scholar]
  29. Sakaguchi T., Matsuda Y., Kiyokage R., Kawahara N., Kiyotani K., Katunuma N., Nagai Y., Yoshida T. Identification of endoprotease activity in the trans Golgi membranes of rat liver cells that specifically processes in vitro the fusion glycoprotein precursor of virulent Newcastle disease virus. Virology. 1991;184:504–512. doi: 10.1016/0042-6822(91)90420-g. [DOI] [PubMed] [Google Scholar]
  30. Stegmann T., Nir S., Wilschut J. Membrane fusion activity of influenza virus: Effects of gangliosides and negatively charged phospholipids in target liposomes. Biochemistry. 1989;28:1698–1704. doi: 10.1021/bi00430a041. [DOI] [PubMed] [Google Scholar]
  31. Steiner D.F., Docherty K., Carroll R. Golgi/granule processing of peptide hormone and neuropeptide precursors: A minireview. J. Cell. Biochem. 1984;24:121–130. doi: 10.1002/jcb.240240204. [DOI] [PubMed] [Google Scholar]
  32. Sturman L.S., Holmes K.V. Proteolytic cleavage of peplomeric glycoprotein E2 of MHV yields two 90K subunits and activates cell fusion. Adv. Exp. Med. Biol. 1984;171:25–35. doi: 10.1007/978-1-4615-9373-7_3. [DOI] [PubMed] [Google Scholar]
  33. Sturman L.S., Ricard C.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Towbin A., Staehelin T., Gordon J. Vol. 76. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications; pp. 4350–4354. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wahlberg J., Boere W.A.M., Garoff H. The heterodimeric association between the membrane proteins of Semliki Forest virus changes its sensitivity to low pH during virus maturation. J. Virol. 1989;63:4991–4997. doi: 10.1128/jvi.63.12.4991-4997.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wengler G., Wengler G. Cell-associated West Nile flavivirus is covered with E + Pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J. Virol. 1989;63:2521–2526. doi: 10.1128/jvi.63.6.2521-2526.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wengler G., Wengler G., Nowak T., Wahn K. Analysis of the influence of proteolytic cleavage on the structural organization of the surface of the West Nile flavivirus leads to the isolation of a protease-resistant E protein oligomer from the viral surface. Virology. 1987;160:210–219. doi: 10.1016/0042-6822(87)90062-6. [DOI] [PubMed] [Google Scholar]
  38. Westaway E.G. Flavivirus replication Strategy. Adv. Virus Res. 1987;33:45–90. doi: 10.1016/s0065-3527(08)60316-4. [DOI] [PubMed] [Google Scholar]
  39. White J., Helenius A., Gething M.A. Hemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion. Nature. 1982;300:658–659. doi: 10.1038/300658a0. [DOI] [PubMed] [Google Scholar]
  40. White J., Kielian M., Helenius A. Membrane fusion proteins of enveloped animal viruses. Q. Rev. Biophys. 1983;16:151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]
  41. Wiley D.C., Skehel J.J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 1987;56:365–394. doi: 10.1146/annurev.bi.56.070187.002053. [DOI] [PubMed] [Google Scholar]
  42. Willey R.L., Klimkait T., Frucht D.M., Bonifacino J.S., Martin M.A. Mutations within the human immunodeficiency virus type 1 gp160 envelope glycoprotein alter its intracellular transport and processing. Virology. 1991;184:319–329. doi: 10.1016/0042-6822(91)90848-6. [DOI] [PubMed] [Google Scholar]
  43. Winkler G., Heinz F.X., Kunz C. Studies on the glycosylation of flavivirus E proteins and the role of carbohydrate in antigenic structure. Virology. 1987;159:237–243. doi: 10.1016/0042-6822(87)90460-0. [DOI] [PubMed] [Google Scholar]
  44. Wise R.J., Barr P.J., Wong P.A., Kiefer M.C., Brake A.J., Kaufman R.J. Vol. 87. 1990. Expression of a human proprotein processing enzyme: Correct cleavage of the von Wilebrand factor precursor at a paired basic amino acid site; pp. 9378–9382. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yasuda A., Kimura-Kuroda J., Ogimoto M., Miyamoto M., Sata T., Sato T., Takamura C., Kurata T., Kojima A., Yasui K. Induction of protective immunity in animals vaccinated with recombinant vaccinia viruses that express PreM and E glycoproteins of Japanese encephalitis virus. J. Virol. 1990;64:2788–2795. doi: 10.1128/jvi.64.6.2788-2795.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES