Abstract
The oligomerization state of the reovirus cell attachment protein σ1 (49K monomeric molecular weight) was determined by biochemical and biophysical means. Full-length (protein product designated A) and C-terminal truncated (protein product designated B) serotype 3 reovirus Sl mRNA transcripts synthesizedin vitro were cotranslated in a rabbit reticulocyte lysate, and the products were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under conditions which allowed for the identification of oligomeric forms of σl. A total of four oligomeric protein bands (corresponding to A3, A2B1, A1B2, and B3, respectively) was consistently observed, which suggests that the protein is made up of three monomeric subunits. Biophysical characterization of purified σ1 using column filtration and sucrose gradient sedimentation analysis confirmed the highly asymmetric shape of σ1 and allowed us to determine the molecular weight of the native protein to be ∼132K (a trimer). Similar biophysical analysis on the two tryptic fragments of the σ1 [N-terminal fibrous tail (26K monomeric molecular weight) and the C-terminal globular head (23K monomeric molecular weight)] yielded molecular weights of 77K and 64K, respectively, both again corresponding to trimers. We therefore conclude that protein σ1 is a homotrimer and provide, with supportive experimental evidence, a rationale for the anomalous behavior of the oligomeric protein in SDS-polyacrylamide gels, which, coupled with chemical cross-linking studies, has in part led to the previous suggestion that σ1 might be a higher order oligomer.
Reference
- Armstrong G.D., Paul R.W., Lee P.W.K. Studies on reovirus receptors of L cells: Virus binding characteristics and comparison with reovirus receptors of erythrocytes. Virology. 1984;138:37–48. doi: 10.1016/0042-6822(84)90145-4. [DOI] [PubMed] [Google Scholar]
- Banerjea A.C., Brechling K.A., Ray C.A., Erickson H., Pickup D.T., Joklik W.K. High-level synthesis of biologically active reovirus protein σ 1 in a mammalian expression vector system. Virology. 1988;167:601–612. [PubMed] [Google Scholar]
- Banerjea A.C., Joklik W.K. Reovirus protein σ1 translatedin vitro, as well as truncated derivatives of it that lack up to two-thirds of its C-terminal portion, exists as two major tetrameric molecular species that differ in electrophoretic mobility. Virology. 1990;179:460–462. doi: 10.1016/0042-6822(90)90315-i. [DOI] [PubMed] [Google Scholar]
- Bassel-Duby R., Jayasuriya A., Chatterjee D., Sonenberg N., Maizel J.V., Jr., Fields B.N. Sequence of reovirus hemagglutinin predicts a coiled-coil structure. Nature (London) 1985;315:421–423. doi: 10.1038/315421a0. [DOI] [PubMed] [Google Scholar]
- Bassel-Duby R., Nibert M.K., Homcy C.J., Fields B.N., Sawutz D.G. Evidence that the σ 1 protein of reovirus serotype 3 is a multimer. J. Virol. 1987;61:1834–1841. doi: 10.1128/jvi.61.6.1834-1841.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cashdollar L.W., Chmelo R.A., Weiner J.R., Joklik W.K. Vol. 82. 1985. Sequence of the S1 genes of the three serotypes of reovirus; pp. 24–28. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delmus B., Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J. Virol. 1990;64:5367–5375. doi: 10.1128/jvi.64.11.5367-5375.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devaux C., Adrian M., Berthet-Colominas C., Cusack S., Jacrot B. Structure of adenovirus fibre. I. Analysis of crystals of fibre from adenovirus serotypes 2 and 5 by electron microscopy and x-ray crystallography. J. Mol. Biol. 1990;215:567–588. doi: 10.1016/S0022-2836(05)80169-X. [DOI] [PubMed] [Google Scholar]
- Doms R.W., Keller D.S., Helenius A., Balch N.E. Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J. Cell Biol. 1987;105:1957–1969. doi: 10.1083/jcb.105.5.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duncan R., Horne D., Cashdollar L.W., Joklik W.K., Lee P.W.K. Identification of conserved domains in the cell attachment proteins of the three serotypes of reovirus. Virology. 1990;174:399–409. doi: 10.1016/0042-6822(90)90093-7. [DOI] [PubMed] [Google Scholar]
- Duncan R., Horne D., Strong I.E., Leone G., Pon R.T., Yeung M.C., Lee P.W.K. Conformational and functional analysis of the C-terminal globular head of the reovirus cell attachment protein. Virology. 1991;182:810–819. doi: 10.1016/0042-6822(91)90622-i. [DOI] [PubMed] [Google Scholar]
- Fraser R.D.B., Furlong D.B., Trus B.L., Nibert M.L., Fields B.N., Steven A.C. Molecular structure of the cell attachment protein of reovirus: Correlation of computer-processed electron micrographs with sequence-based predictions. J. Virol. 1990;64:2990–3000. doi: 10.1128/jvi.64.6.2990-3000.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furlong D.B., Nibert M.L., Fields B.N. σ1 protein of mammalian reoviruses extends from the surfaces of viral particles. J. Virol. 1988;62:246–256. doi: 10.1128/jvi.62.1.246-256.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreis T.E., Lodish H.F. Oligomerization is essential for transport of vesicular stomatitis viral glycoproteins to the cell surface. Cell. 1986;46:929–937. doi: 10.1016/0092-8674(86)90075-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee P.W.K., Hayes E.C., Joklik W.K. Protein σ1 is the reovirus cell attachment protein. Virology. 1981;108:156–163. doi: 10.1016/0042-6822(81)90535-3. [DOI] [PubMed] [Google Scholar]
- Leone G., Duncan R., Mah D.C.W., Price A., Cashdollar L.W., Lee P.W.K. The N-terminal heptad repeat region of reovirus cell attachment protein σ1 is responsible for al oligomer stability and possesses intrinsic oligomerization function. Virology. 1991;182:336–345. doi: 10.1016/0042-6822(91)90677-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leone G., Mah D.C.W., Lee P.W.K. The incorporation of reovirus cell attachment protein σ1 into virions requires the N-terminal hydrophobic tail and the adjacent heptad repeat region. Virology. 1991;182:346–350. doi: 10.1016/0042-6822(91)90678-5. [DOI] [PubMed] [Google Scholar]
- Leone G., Duncan R., Lee P.W.K. Trimerization of the reovirus cell attachment protein (σ1) induces conformational changes in σ1 necessary for its cell binding function. Virology. 1991 doi: 10.1016/0042-6822(91)90447-j. in press. [DOI] [PubMed] [Google Scholar]
- Mah D.C.W., Leone G., Jakkowski J.M., Lee P.W.K. The N-terminal quarter of reovirus cell attachment protein σ1 possesses intrinsic virion-anchoring function. Virology. 1990;179:95–103. doi: 10.1016/0042-6822(90)90278-y. [DOI] [PubMed] [Google Scholar]
- Nagata L., Masri S.A., Mah D.C.W., Lee P.W.K. Molecular cloning and sequencing of the reovirus (serotype 3) S1 gene which encodes the viral cell attachment protein σ1. Nucleic Acids Res. 1984;12:8699–8710. doi: 10.1093/nar/12.22.8699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagata L., Masri S.A., Pon R.T., Lee P.W.K. Analysis of functional domains on reovirus cell attachment protein σ1 using cloned S1 gene deletion mutants. Virology. 1987;160:162–168. doi: 10.1016/0042-6822(87)90056-0. [DOI] [PubMed] [Google Scholar]
- Nibert M.L., Dermody T.S., Field B.N. Structure of the reovirus cell-attachment protein: A model for the domain organization of σ1. J. Virol. 1990;64:2976–2989. doi: 10.1128/jvi.64.6.2976-2989.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siegel L.M., Monty K.J. Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation: Application to crude preparations of sulfite and hydroxylamime reducatases. Biochim. Biophys. Acta. 1966;112:346–362. doi: 10.1016/0926-6585(66)90333-5. [DOI] [PubMed] [Google Scholar]
- Smith R.E., Zweerink H.J., Joklik W.K. Polypeptide components of virions, top component and cores of reovirus type 3. Virology. 1969;39:791–810. doi: 10.1016/0042-6822(69)90017-8. [DOI] [PubMed] [Google Scholar]
- Van Oostrum J., Smith P.R., Mohraz M., Burnett R.M. The structure of the adenovirus capsid. III. Hexon packing determined from electron micrographs of capsid fragments. J. Mol. Biol. 1987;198:73–89. doi: 10.1016/0022-2836(87)90459-1. [DOI] [PubMed] [Google Scholar]
- Weiner H.L., Ramig R.F., Mustoe T.A., Fields B.N. Identification of the gene coding for the hemagglutinin of reovirus. Virology. 1978;86:581–584. doi: 10.1016/0042-6822(78)90099-5. [DOI] [PubMed] [Google Scholar]
- Weiss C.D., Levy J.A., White J.M. Oligomeric organization of gp 120 on infectious human immunodeficiency virus type 1 particles. J. Virol. 1990;64:5674–5677. doi: 10.1128/jvi.64.11.5674-5677.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiley D.C., Wilson I.A., Skehel J.J. Structural identification of the antibody-binding sites of Hong Kong influenza hemagglutination and their involvement in antigenic variation. Nature (London) 1981;289:373–378. doi: 10.1038/289373a0. [DOI] [PubMed] [Google Scholar]
- Wilson I.A., Skehel I.J., Wiley D.C. Structure of the hemagglutination membrane glycoprotein of influenza virus at 3A˚resolution. Nature (London) 1981;289:368–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
- Yeung M.C., Gill M.J., Suleiman S.A., Shahrabadi M.S., Lee P.W.K. Purification and characterization of the reovirus cell attachment protein σ1. Virology. 1987;156:377–385. doi: 10.1016/0042-6822(87)90417-x. [DOI] [PubMed] [Google Scholar]
- Yeung M.C., Lim D., Duncan R., Shahrabadi M.S., Cashdollar L.W., Lee P.W.K. The cell attachment proteins of type 1 and type 3 reovirus are differentially susceptible to trypsin and chymotrypsin. Virology. 1989;170:62–70. doi: 10.1016/0042-6822(89)90352-8. [DOI] [PubMed] [Google Scholar]
- Zehr B.D., Savin T.J., Hall R.E. A one step, low background Coomassie staining procedure for polyacrylamide gels. Anal. Biochem. 1989;182:157–159. doi: 10.1016/0003-2697(89)90734-3. [DOI] [PubMed] [Google Scholar]