Abstract
In order to establish the eukaryotic cell lines for inducible control of SARS-CoV nucleocapsid gene expression.The recombinant plasmid of pTRE-Tight-SARS-N was constructed by using the plasmid p8S as the PCR template which contains a cDNA clone covering the nucleocapsid gene of SARS-CoV HKU-39449. Restriction enzymes digestion and sequence analysis indicated the recombinant plasmid of pTRE-Tight-SARS-N contained the nucleocapsid gene with the optimized nucleotide sequence which will improve the translation efficiency. Positive cell clones were selected by cotransfecting pTRE-Tight-SARS-N with the linear marker pPUR to BHK-21 Tet-on cells in the presence of puromycin. A set of double-stable eukaryotic cell lines (BHK-Tet-SARS-N) with inducible control of the SARS-CoV neucleocapsid gene expression was identified by using SDS-PAGE and Western-blot analysis. The expression of SARS-CoV nucleocapsid protein was tightly regulated by the varying concentration of doxcycline in the constructed double-stable cell line. The constructed BHK-Tet-SARS-N cell strains will facilitate the rescue of SARS-CoV in vitro and the further reverse genetic research of SARS-CoV.
Key words: SARS-CoV, Nucleocapsid protein, Inducible expression, Double stable cell lines
Footnotes
Fundation Items: This work was supported by the European Commission (SARS-DTV) SP22-CT-2004-511064), and the State Key Laboratory of Pathogen and Biosecunity SKLPBS0918.
References
- 1.Almazan F., Gonzalez J. M., Penzes Z., et al. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA. 2000;97:5516–552. doi: 10.1073/pnas.97.10.5516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Casais R., Thiel V., Siddell G. S., et al. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol. 2001;75(24):12359–12369. doi: 10.1128/JVI.75.24.12359-12369.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Drosten C., Gunther S., Preiser W., et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1967–1976. doi: 10.1056/NEJMoa030747. [DOI] [PubMed] [Google Scholar]
- 4.Falsey A. R., McCann R. M., Hall W. J., et al. The “common cold” in frail older persons: Impact of rhinovirus andcoronavirus in a senior daycare center. J Am Geriatr Soc. 1997;45:706–711. doi: 10.1111/j.1532-5415.1997.tb01474.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Fouchier R. A., Kuiken T., Schutten M., et al. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature. 2003;423:240–245. doi: 10.1038/423240a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Gossen M., Bujard H. Tight control of gene expression in mammalian cells by tetracycline responsive promoters. Proc Natl Acad Sci USA. 1992;89:5547–5551. doi: 10.1073/pnas.89.12.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Gossen M., Freundlieb S., Bender G., et al. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995;268:1766–1769. doi: 10.1126/science.7792603. [DOI] [PubMed] [Google Scholar]
- 8.Hsieh P. K., Chang S. C., Huang C. C., et al. Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J Virol. 2005;79(22):13848–13855. doi: 10.1128/JVI.79.22.13848-13855.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Krishna N., Chen C. j., Junko M., et al. Nucleocapsid-Indepandent specific viral RNA packaging via viral envelope protein and viral RNA signal. J Virol. 2003;77(5):2922–2927. doi: 10.1128/JVI.77.5.2922-2927.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Ksiazek T. G., Erdman D., Goldsmith C. S., et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1953–1966. doi: 10.1056/NEJMoa030781. [DOI] [PubMed] [Google Scholar]
- 11.Lee N., Hui D., Wu A., et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003;348(20):1986–1994. doi: 10.1056/NEJMoa030685. [DOI] [PubMed] [Google Scholar]
- 12.Li W., Shi Z., Yu M., Ren W., Smith C., et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–679. doi: 10.1126/science.1118391. [DOI] [PubMed] [Google Scholar]
- 13.Marra M. A., Jones S. J., Astell C. R., et al. The genome sequence of the SARS-associated coronavirus. Science. 2003;300:1399–1404. doi: 10.1126/science.1085953. [DOI] [PubMed] [Google Scholar]
- 14.Perlman S., Dandekar A. A. Immunopathogenesis of coronavirus infections: Implications for SARS. Nat Rev Immunol. 2005;5:917–927. doi: 10.1038/nri1732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Rota P. A., Oberste M. S., Monroe S. S., et al. Characterization of a novel coronavirus associated with severe acuterespiratory syndrome. Science. 2003;300:1394–1399. doi: 10.1126/science.1085952. [DOI] [PubMed] [Google Scholar]
- 16.Scott E. C., Ehud L., Stanley G. S., et al. Recombinant mouse hepatitis virus strain A59 from cloned, full-length cDNA replicates to high titers in vitro and is fully pathogenic in vivo. J Virol. 2005;79(5):3097–3106. doi: 10.1128/JVI.79.5.3097-3106.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Thiel V., Herold J., Schelle B., et al. Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol. 2001;82:1273–1281. doi: 10.1099/0022-1317-82-6-1273. [DOI] [PubMed] [Google Scholar]
- 18.Van der Hoek L., Pyrc K., Berkhout B. Human coronavirus NL63, a new respiratory virus. FEMS Microbiol Rev. 2006;30:760–773. doi: 10.1111/j.1574-6976.2006.00032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Weiss S. R., Navas Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69:635–664. doi: 10.1128/MMBR.69.4.635-664.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.World Health Organization. 2004. World health report 2004-changing history. http://www.who.int/whr/2004/chapter5/en/.
- 21.Yin D. X., Zhu L., Schimke R. T. Tetracycline controlled gene expression system achieves high-level and quantitative control of gene expression. Anal Biochem. 1996;235:195–201. doi: 10.1006/abio.1996.0112. [DOI] [PubMed] [Google Scholar]
- 22.Yount B., Curtis K. M., Baric R. S. Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J Virol. 2000;74:10600–10611. doi: 10.1128/JVI.74.22.10600-10611.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]